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ABSTRACT

A main gpplication of lidar remote sensing is to provide spatid resolved data. Based on the fundamentd
relationship between space and time the distance can be caculated from the photons' time of flight. Ac-
cordingly, the distance resolution is limited by the time resolution of the lidar detector. Furthermore, if the
system response function of the lidar islonger than the time resolution interva of the detector, the measured
lidar Sgna is smeared, and the effective distance resolution decreases. In theory, this loss of resolution can
be corrected by deconvolution of the measured signd with the system response function. Measured lidar
sgnals are superposed by noise which makes a direct deconvolution impossble because of the effect of
noise amplification.

In this paper, atechnique is presented which alows for a stable deconvolution of lidar Ssgnd returns without
any filtering in the frequency domain. It is based on the Richardson-Lucy dgorithm for image reconstruc-
tion. Smulations of short distance lidar sgnas have been used to compare the method with conventiona
deconvolution agorithms such as the Fourier transformation.

INTRODUCTION
Time-resolved lidar signds P(t) are normally analysed by the well-known single scattering lider equation.*
The rlation between timet and distance x is given by
c:t
X = > 1)
where c is the speed of light in the corresponding medium. The distance resolution Dx is therefore deter-
mined by the time resolution Dt of the detector and the length and shape of the laser pulse. If the system
regponse function R(t) of the lidar, often denoted as the system function, is much longer than the sampling
interva Dt, the distance resolution Dx increases. This is mathematically described by the convolution inte-
gra
¥
P(t) = QR(t-t)Ra(t)at'° R(t)” R (t) - @)
-¥
In this equation, Py(t) is a signd that could be measured with an infinitively short detector response time
and laser pulse length. P4(t) can be cdled the impulse response function of the environment. It reflects the
true distribution of optically active substances dong the ray path of thelidar.

METHODS

Fourier transformation

Assuming a known system response function R(t) of the ingrument, the deconvolution of the lidar sgna
P(t) by R(t) improves the distance resolution. L. Gurdev et a. developed deconvolution techniques that are
based on Fourier transforms and on the solution of the Volterraintegral equation.? The convolution theorem
is

P(t) =R(t)" Py(t) U FP(f)=FR(f)xFRy(f) . 3
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“F stands for Fourier transform, "F for itsinversion. This leads to the deconvol ution equation
-1aP(f) 06
PR =F ¢——== . 4
a0 =F em )z 0
Lidar data are normaly digitised so that Eq. (2) can be expressed in a discrete form. P(t,) and Pq(t,) are
connected by the convolution matrix M:

P(th) =M xRy (ty) 5)
2R(t1) 0 0 - 0 0 9
gR(tz) R(t]) O 0 0 _
. G .. R R) o -0 7
with M‘gR(tm) 2 R(tlz) R) O i
¢ 0 Rim) -~ Rt Rt 2

Y. JePark et d. calculated the inverse convolution matrix M™ in order to perform a deconvolution by me-
trix multiplication:®

Ri(tn) = M~ 1xP(ty) (6)
In real measurements, lidar Sgnds are dways superposed by noise N(t):
Pm(t) =P@®) + N(®) = (R()" Ry )+ N(1) @)

and this additive term makes a direct deconvolution impossible. In cases, however, where the functiona
shape of the undisturbed signd P(t) is known, e. g. in fluorescence decay time measurements, the number
of free parameters is reduced sgnificantly, and Eq. 7 can be numerically solved by aleast squaresfit.

Lidar profiles are strongly dependent on the optical geometry of the instrument and on the composition and
gpatid didribution of substances in the medium. The system function R(t) is mainly governed by the laser
pulse shape, and by the photomultiplier and digitiser response function. In generd, the convolution with R(t)
shows alow pass characterigtic. A deconvolution with Eq. 4 or 6 therefore intensifies the range of higher
frequencies, where noise contributions to the sgnd are relevant. In consequence, smple low-pass filtering
can be very useful in some cases. The cut-off frequency can be derived from the power spectrum of R(t),
and the window length should be adapted to the length of the pulse response. However, low-pass filtering
of the measured Sgna Pr(t) will not only affect noise but dso the undisturbed lidar signd P(t). An optimal
filter isthe Wiener filter F (f), defined by

FRn(f):F ()

FRy(f)= R

(8)

0 that [Pu(t) - Ry ©)], = JPw(®) - Py (©) =min . ©)
t
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The Wiener filter* can be constructed by
2
FP(f
F(fy=— )

_ . (10)
FP(H)Z+[FN()?

Eq. 10 requires knowledge - or at least a hypothesis - of the power spectral density of the noise and the
undisturbed sgnd. There is no way to derive this from the measured Sgna P(t) alone. Press et d. pro-
posed to sdlect a cut-off frequency "by eye” from the power spectra density of the measured sgna
FPa(f)F.

Non-negative least squaresalgorithm.

Combining Egs. 5 and 7 yields

Pmn(tn) =P(th) + N(tn) = M xRy (tq) + N(tn) (11)
from which follows M By (tn) - Pm(t) =- N(tp)
hence:

IM Ry () - Pt =ﬁé (M By (tn) - Pm(tn))?
n

1 o
==& N(tn)? =[Ntn)],
Mmax p

(12)

Without any prior information about Py(t) and N(t) we may assume thet the noise is minimized. Py(t) isthe
sgna which would be received by an ided lidar. It holds By (t) 2 O a any time t. The deconvolution

problem with respect to Py(t) can be expressed in the form

”M xR (tn) - Pm(tn)”Z =min, FRy(tp) 20"ty (13).

Lawson and Hanson developed a method caled “non-negative least squares’ (NNLS) agorithm to solve
this genera problem (see appendix).

Richardson-L ucy algorithm.
The Richardson-Lucy dgorithm is an iterative dgorithm which was developed for image retoration early in
the 1970’s independently by W. H. Richardson and L. B. Lucy. ®7 It is derived directly from Bayes theo-
rem. When we regard alidar profile as an image with the dimension 1 x N, the Richardson-Lucy dgorithm
can be used for deconvolution. Eq. 14 showsits adapted form. Thei-th iteration can be caculated by
Pn(®) ¢
F’m(l) (1) E
with Pty =rt)” ry (1) .

RV =ry ) ngT (t) (14)

The messured signd P,.(t) is taken as the initial guess P for the iteration. Negative vaues due to noise
have to be st to zero in order to guarantee its convergence. It is easy to see from Eq. 14 that the tota
sgna power will be conserved.
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SIMULATION

A smulated lidar sgna has been used to test the feasibility of range resolution improvement by deconvolu-
tion. Thelidar parameters correspond to data for an underwater lidar;? the sampling rate is increased from
250 Mhz (Dt=2 ns) to 500 Mhz [©t=1 ns). Natura decay times and multiple scattering effects are re-
glected.
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Figure 1. Normalised system response func- Figure 2. Power spectral density |FR(f)|2
tion R(t)

The system response function of the lidar can be regarded as a convolution of laser pulse shape and pho-
tomultiplier decay function. The laser pulse has a Gaussian shape with a standard deviation of 2.5 ns. The
photomultiplier impulse response shows an exponentia decay with atime congtant of 2 ns. Figure 1 shows
the normalised lidar sysem function R(t). The shape of R(t) is identica with the lidar sgnd P.(t) which
originates from a scattering d-peak in a non-absorbing and non-scattering medium. For real measurements,
R(t) will be derived in thisway. The influence of fluctuationsin R(t) on the deconvolution process has been
investigated by Dreischuh et d..° The power spectral dengity [FR(f)R of the lidar system function is plotted
in Figure 2. Its low-pass characterigtic is obvious. A low-pass filter with a cut-off frequency a 200 Mhz
and awindow length of 32 nsis reasonable to avoid noise intensfying. Application of this filter will limit the
maximum distance resolution to DR = 0.5 ate % NS » 0.56 m.

Figure 3 draws the virtud lidar sgnd Py(t). In generd, lidar sgnds show a more dynamic behaviour with
srongly decreasing intensty over distance because of the geometrical form factor and beam atenuation.
However, as the digtribution of the measured substance within the water column is fredy variable, the func-
tiond shape of alidar sgnd is not determined.
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Figure 3: Ideal lidar signal P4(t) Figure4: Smulated lidar signal P(t) (Eq. 2)

The profile congsts of three plateaus between 16 ns and 64 ns and two d-peaks in 85 nsand in 95 ns
distance. Each of the agorithms which are described above lead to an exact solution of Eq. 2 when noiseis
absent. P4(t) can be calculated directly from P(t) usng R(t). In order to test the stability of the deconvolu-
tion agorithms, “red” sgnds Py (t) have been produced by adding an artificid noiseto P(t) (Eq. 7). The
noise isarandom Gaussian digtribution and is typicaly defined as shot noise; its sandard deviation is0.1 %
of the maximum of the measured sgndl.

RESULTS
Figures 5 to 10 show the results of adirect deconvolution of the amulated lidar Sgnds with the given sys-

tem response function. The result of adirect deconvolution by Fourier transformation is plotted in Figure 5.
The effect of noise amplification especidly in the region of high frequencies can be observed. It can bere-
duced by prior low passfiltering, Figure 6. Figure 7 shows the result of application of the NNLS agorithm.
Peaks are well recongtructed, but the whole sgnd is overlayed by an amplified noise. Previous low pass

filtering improves again the Sgnd quality, Figure 8.
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Figure5: Lidar sgnal with 0.1 % noise, decon- Figure6: Lidar signal with 0.1 % noise, decon-
voluted by Fourier transformation without prior  voluted by NNL S approximation without prior
low passfiltering. low passfiltering.
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Figure 7: Lidar signal with 0.1 % noise, decon-  Figure 8: lidar signal with 0.1 % noise, decon-
voluted by Fourier transformation after low voluted by NNL S approximation after low pass

passfiltering. filtering.
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Figure9: Lidar signal with 0.1 % noise, decon- Figure 10: Lidar signal with 0.1 % noise, de-

voluted by the Richardson-Lucy method after convoluted by the Richardson-Lucy method

low passfiltering (100 iteration steps). without prior low pass filtering (100 iteration
steps).

Application of the Richardson-Lucy agorithm leads to the data in Figures 9 and 10. The reconstruction of
the undisturbed signd (Figure 3) from the measured sgnd (Figure 4) by the Richardson-Lucy dgorithm is
better than by Fourier transformation or NNLS. Noise amplification does not appear. The result of the
deconvolution is independent of previous low pass filtering.

CONCLUSIONS
The distance resolution of a lidar can be improved by the use of deconvolution techniques. Conventiona

agorithms which are based on Fourier transforms show a very senditive behaviour in the presence of noise
and therefore require noise removing filters to be gpplied. The qudity of the non-negative least squares
deconvolution varies with the shape of the profile. It can restore d-peaks, but showed to be very unstable
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when plateaus are to be restored. For the examined lidar profile the 1-dimensond Richardson-Lucy ago-
rithm leads to the best results. The retrieva of the optimum iteration number as well asits perfomance with
an increedng noise leve has to be investigated in more detall in order to make it a useful tool for lidar data
processing.

APPENDIX: NON-NEGATIVE LEAST SQUARESALGORITHM
The dgorithm is reproduced from Lawson and Hanson, 1974.
Let E bean my " n matrix and f an my-vector.

Problem: Minimize |Ex- f|| with respect to x3 0
Step Description

st Pi=/A, Z::{1,2,...,n}, x:=0

caculate w:= ET(f - EX)

if Z=/ or wj £0 "j1 Z,goto step 12
findindex tT Z, sothat w = max{w;; 1 Z}
moveindex t from Z to P

OO0 A W NP

define Ep as My~ n-matrix by column j of EP::‘%cqumn j_Of I% e
i oif jl Zz

caculaethe n-vector z asasolution of the least squares problem Epz @f

notice that only the components zj,j | P are determined

define zj :=0"j1 Z

if Zj >0"jl P,sat x:=2 and goto step 2

findtheindex ql P sothat

Xq/(Xq - Zg) :m'n{xj/(xj -2j):z; £0,j1 P}

0 |®aExg/0q- %)

10 st x:=x+a(z- x)

11 moveform P to Z dlindices jT P with xj =0
goto step 6

12 end of caculation

A proof of the finite convergence of the agorithm is aso given in Lawson and Hanson, 1974.°
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