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ABSTRACT
A main application of lidar remote sensing is to provide spatial resolved data. Based on the fundamental
relationship between space and time the distance can be calculated from the photons’ time of flight. Ac-
cordingly, the distance resolution is limited by the time resolution of the lidar detector. Furthermore, if the
system response function of the lidar is longer than the time resolution interval of the detector, the measured
lidar signal is smeared, and the effective distance resolution decreases. In theory, this loss of resolution can
be corrected by deconvolution of the measured signal with the system response function. Measured lidar
signals are superposed by noise which makes a direct deconvolution impossible because of the effect of
noise amplification.
In this paper, a technique is presented which allows for a stable deconvolution of lidar signal returns without
any filtering in the frequency domain. It is based on the Richardson-Lucy algorithm for image reconstruc-
tion. Simulations of short distance lidar signals have been used to compare the method with conventional
deconvolution algorithms such as the Fourier transformation.

INTRODUCTION
Time-resolved lidar signals P(t) are normally analysed by the well-known single scattering lidar equation.1

The relation between time t and distance x is given by

2
tc

x
⋅

=  , (1)

where c is the speed of light in the corresponding medium. The distance resolution ∆x is therefore deter-
mined by the time resolution ∆t of the detector and the length and shape of the laser pulse. If the system
response function R(t) of the lidar, often denoted as the system function, is much longer than the sampling
interval ∆t, the distance resolution ∆x increases. This is mathematically described by the convolution inte-
gral
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In this equation, Pδ(t) is a signal that could be measured with an infinitively short detector response time
and laser pulse length. Pδ(t) can be called the impulse response function of the environment. It reflects the
true distribution of optically active substances along the ray path of the lidar.

METHODS
Fourier transformation
Assuming a known system response function R(t) of the instrument, the deconvolution of the lidar signal
P(t) by R(t) improves the distance resolution. L. Gurdev et al. developed deconvolution techniques that are
based on Fourier transforms and on the solution of the Volterra integral equation.2 The convolution theorem
is

                           )()()( tPtRtP δ×=    ⇔  )(F)(F)(F fPfRfP δ⋅=   . (3)
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´F´ stands for Fourier transform, ´F-1´ for its inversion. This leads to the deconvolution equation
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Lidar data are normally digitised so that Eq. (2) can be expressed in a discrete form. P(tn) and Pδ(tn) are
connected by the convolution matrix M:

)()( nn tPMtP δ⋅= (5)
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Y. Je Park et al. calculated the inverse convolution matrix M-1 in order to perform a deconvolution by ma-
trix multiplication:3

)()( 1
nn tPMtP ⋅= −

δ (6)

In real measurements, lidar signals are always superposed by noise N(t):

( ) )()()()()()( tNtPtRtNtPtPm +×=+= δ   , (7)

and this additive term makes a direct deconvolution impossible. In cases, however, where the functional
shape of the undisturbed signal P(t) is known, e. g. in fluorescence decay time measurements, the number
of free parameters is reduced significantly, and Eq. 7 can be numerically solved by a least squares fit.

Lidar profiles are strongly dependent on the optical geometry of the instrument and on the composition and
spatial distribution of substances in the medium. The system function R(t) is mainly governed by the laser
pulse shape, and by the photomultiplier and digitiser response function. In general, the convolution with R(t)
shows a low pass characteristic. A deconvolution with Eq. 4 or 6 therefore intensifies the range of higher
frequencies, where noise contributions to the signal are relevant. In consequence, simple low-pass filtering
can be very useful in some cases. The cut-off frequency can be derived from the power spectrum of R(t),
and the window length should be adapted to the length of the pulse response. However, low-pass filtering
of the measured signal Pm(t) will not only affect noise but also the undisturbed lidar signal P(t). An optimal
filter is the Wiener filter Φ(f), defined by
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The Wiener filter4 can be constructed by
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Eq. 10 requires knowledge - or at least a hypothesis - of the power spectral density of the noise and the
undisturbed signal. There is no way to derive this from the measured signal Pm(t) alone. Press et al. pro-
posed to select a cut-off frequency ´by eye´ from the power spectral density of the measured signal
|FPm(f)|2.

Non-negative least squares algorithm.
Combining Eqs. 5 and 7 yields
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Without any prior information about Pδ(t) and N(t) we may assume that the noise is minimized. Pδ(t) is the
signal which would be received by an ideal lidar. It holds 0)( ≥tPδ  at any time t. The deconvolution
problem with respect to Pδ(t) can be expressed in the form

min)()( 2 =−⋅ nmn tPtPM δ , nn ttP ∀≥ 0)(δ (13).

Lawson and Hanson developed a method called ´non-negative least squares´ (NNLS) algorithm to solve
this general problem (see appendix).5

Richardson-Lucy algorithm.
The Richardson-Lucy algorithm is an iterative algorithm which was developed for image restoration early in
the 1970´s independently by W. H. Richardson and L. B. Lucy. 6,7 It is derived directly from Bayes theo-
rem. When we regard a lidar profile as an image with the dimension 1 x N, the Richardson-Lucy algorithm
can be used for deconvolution. Eq. 14 shows its adapted form. The i-th iteration can be calculated by
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The measured signal Pm(t) is taken as the initial guess Pδ
(1) for the iteration. Negative values due to noise

have to be set to zero in order to guarantee its convergence. It is easy to see from Eq. 14 that the total
signal power will be conserved.
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SIMULATION
A simulated lidar signal has been used to test the feasibility of range resolution improvement by deconvolu-
tion. The lidar parameters correspond to data for an underwater lidar;8 the sampling rate is increased from
250 Mhz (∆t=2 ns) to 500 Mhz (∆t=1 ns). Natural decay times and multiple scattering effects are ne-
glected.

Figure 1: Normalised system response func-
tion R(t)

Figure 2: Power spectral density 2)( fFR

The system response function of the lidar can be regarded as a convolution of laser pulse shape and pho-
tomultiplier decay function. The laser pulse has a Gaussian shape with a standard deviation of 2.5 ns. The
photomultiplier impulse response shows an exponential decay with a time constant of 2 ns. Figure 1 shows
the normalised lidar system function R(t). The shape of R(t) is identical with the lidar signal Pm(t) which
originates from a scattering δ-peak in a non-absorbing and non-scattering medium. For real measurements,
R(t) will be derived in this way. The influence of fluctuations in R(t) on the deconvolution process has been
investigated by Dreischuh et al..9 The power spectral density |FR(f)|² of the lidar system function is plotted
in Figure 2. Its low-pass characteristic is obvious. A low-pass filter with a cut-off frequency at 200 Mhz
and a window length of 32 ns is reasonable to avoid noise intensifying. Application of this filter will limit the
maximum distance resolution to ∆R =  0.5⋅cwater⋅5 ns ≈ 0.56 m.

Figure 3 draws the virtual lidar signal Pδ(t). In general, lidar signals show a more dynamic behaviour with
strongly decreasing intensity over distance because of the geometrical form factor and beam attenuation.
However, as the distribution of the measured substance within the water column is freely variable, the func-
tional shape of a lidar signal is not determined.
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Figure 3: Ideal lidar signal Pδ(t) Figure 4: Simulated lidar signal P(t) (Eq. 2)

The profile consists of three plateaus between 16 ns and 64  ns and two δ-peaks  in 85 ns and in 95 ns
distance. Each of the algorithms which are described above lead to an exact solution of Eq. 2 when noise is
absent. Pδ(t) can be calculated directly from P(t) using R(t). In order to test the stability of the deconvolu-
tion algorithms, ´real´ signals Pm(t) have been produced by adding an artificial noise to P(t) (Eq. 7). The
noise is a random Gaussian distribution and is typically defined as shot noise; its standard deviation is 0.1 %
of the maximum of the measured signal.

RESULTS
Figures 5 to 10 show the results of a direct deconvolution of the simulated lidar signals with the given sys-
tem response function. The result of a direct deconvolution by Fourier transformation is plotted in Figure 5.
The effect of noise amplification especially in the region of high frequencies can be observed. It can be re-
duced by prior low pass filtering, Figure 6. Figure 7 shows the result of application of the NNLS algorithm.
Peaks are well reconstructed, but the whole signal is overlayed by an amplified noise. Previous low pass
filtering improves again the signal quality, Figure 8.

Figure 5: Lidar signal with 0.1 % noise, decon-
voluted by Fourier transformation without prior
low pass filtering.

Figure 6: Lidar signal with 0.1 % noise, decon-
voluted by NNLS approximation without prior
low pass filtering.
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Figure 7: Lidar signal with 0.1 % noise, decon-
voluted by Fourier transformation after low
pass filtering.

Figure 8: lidar signal with 0.1 % noise, decon-
voluted by NNLS approximation after low pass
filtering.

Figure 9: Lidar signal with 0.1 % noise, decon-
voluted by the Richardson-Lucy method after
low pass filtering (100 iteration steps).

Figure 10: Lidar signal with 0.1 % noise, de-
convoluted by the Richardson-Lucy method
without prior low pass filtering (100 iteration
steps).

Application of the Richardson-Lucy algorithm leads to the data in Figures 9 and 10. The reconstruction of
the undisturbed signal (Figure 3) from the measured signal (Figure 4) by the Richardson-Lucy algorithm is
better than by Fourier transformation or NNLS.  Noise amplification does not appear. The result of the
deconvolution is independent of previous low pass filtering.

CONCLUSIONS
The distance resolution of a lidar can be improved by the use of deconvolution techniques. Conventional
algorithms which are based on Fourier transforms show a very sensitive behaviour in the presence of noise
and therefore require noise removing filters to be applied. The quality of the non-negative least squares
deconvolution varies with the shape of the profile. It can restore δ-peaks, but showed to be very unstable
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when plateaus are to be restored. For the examined lidar profile the 1-dimensional Richardson-Lucy algo-
rithm leads to the best results. The retrieval of the optimum iteration number as well as its perfomance with
an increasing noise level has to be investigated in more detail in order to make it a useful tool for lidar data
processing.

APPENDIX: NON-NEGATIVE LEAST SQUARES ALGORITHM
The algorithm is reproduced from Lawson and Hanson, 1974.5

Let E  be an nm ×2  matrix and f  an 2m -vector.

Problem: Minimize fEx −  with respect to 0≥x

Step Description
1 set ∅=:P , { }nZ ,...,2,1:= , 0:=x
2 calculate ( )ExfEw T −=:
3 if ∅=Z  or 0≤jw  Zj ∈∀ , goto step 12

4 find index Zt ∈ , so that { }Zjww jt ∈= ;max

5 move index t from Z  to P
6

define PE  as nm ×2 -matrix by 




∈
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,
:

calculate the n -vector z  as a solution of the least squares problem fzEP ≅
notice that only the components Pjz j ∈,  are determined

define 0:=jz Zj ∈∀

7 if 0>jz Pj ∈∀ , set zx =:  and goto step 2

8 find the index Pq∈  so that
{ }Pjzzxxzxx jjjjqqq ∈≤−=− ,0:)(min)(

9 set )(: qqq zxx −=α

10 set )(: xzxx −+= α
11 move form P  to Z  all indices Pj ∈  with 0=jx

goto step 6
12 end of calculation

A proof of the finite convergence of the algorithm is also given in Lawson and Hanson, 1974.5
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