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ABSTRACT 

Remote sensing enables the recording of accurate geomorphological data with the capability to 
efficiently cover large areas. However, the presence of vegetation makes the use of remote meth-
ods for terrain mapping difficult. LiDAR (Light Detection And Ranging) data collection by means of 
ALS (Airborne Laser Scanning) can be a solution for forestry projects, as the laser pulses cross the 
entire forest canopy and reach the soil underneath. In order to obtain an accurate digital terrain 
model, the ALS data must be processed, so as to determine which returns are at ground level. This 
process is called filtering or classification. 

This paper aims to provide a performance analysis of nine algorithms for ALS data classification. 
The algorithm performance is reviewed for the case of mountainous terrain, characterised by mod-
erate and steep slopes and forest vegetation of a generally high consistency. Out of the nine algo-
rithms tested, two are commercial ones and the others are free.  

Our findings suggest that the Lasground-new algorithm implemented in the LAStools (Rapidlasso) 
software package provides the most accurate results, with a Root Mean Square Error of elevation 
values for the study site of 0.34 metres (with over 80 percent of the area having an elevation error 
of less than 0.20 metres) and an average RMSE for the field plots of 0.66 metres. Reference data 
for RMSE calculation is a DTM interpolated from the ALS point cloud, as classified by the data pro-
vider. Some of the free algorithms tested provide relatively similar results in terms of RMSE (for 
example, MLS and SMRF have RMSE values of 0.56 metres and 0.60 metres, respectively). The 
correlation between ground slope and RMSE of elevation values is considered for the eight field 
surveyed plots, with R2 having a value of 0.89. 

Taking into account the difficult test conditions (topographically complex surface with dense cano-
py cover) we consider ALS data to be a possible solution for collecting geomorphological data for 
forestry applications, as long as data at a relatively low spatial resolution is sufficient.  
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INTRODUCTION 

A digital representation of the ground surface is a valuable resource in forestry. Use cases for such 
a representation include: planning forest harvesting operations, determining forest inventory pa-
rameters (1), forest network optimisation and forest road planning (2,3). A DTM (Digital Terrain 
Model) also serves as an intermediary product for canopy height modelling or biomass estimation 
from ALS data (4). Traditionally, geomorphological data has been collected via topographical sur-
veys (not suitable for large areas and difficult to manage in steep, forested areas) or using photo-
grammetric methods. Due to the presence of vegetation cover, the application of a photogrammet-
ric approach for collecting ground data is very problematic. Furthermore, since photogrammetry 
(stereo aerial photography) is a passive remote sensing method, the dense crown cover and the 
shadowing specific to forest environments poses an additional problem. 

Laser scanning (also called LiDAR - Light Detection And Ranging) data can be collected from air-
borne platforms (ALS - Airborne Laser Scanning) and has the capability to penetrate forest cano-
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pies (5), mapping not only the forest structure, but also the ground underneath it (3). Therefore, the 
technology is suitable for forestry applications, so its use has been constantly increasing (6). In the 
past decade, ALS has become the preferred method of collecting elevation data (7), especially in 
forested areas.  

The comparison of filtering accuracies achieved by different algorithms has been an active field of 
research in the past decades. In (8) eight test sites were established, both urban and rural. While 
some of the samples include dense vegetation, most of them contain urban or rural landscapes, 
with buildings, bridges and other man-made structures. Eight filters are compared, with a qualita-
tive and quantitative assessment being carried out (8). The study’s intent is not a conclusive rank-
ing of the filters’ performance. Instead, challenging conditions are identified and the way different 
filters are affected by them are discussed. In (9) a comparison of three filtering algorithms for three 
test sites is carried out, one of which is described as high-relief forest. A qualitative analysis of fil-
tering errors for this site is reported, indicating that the Maximum Local Slope algorithm is best, 
with regard to the removal of low vegetation. The performance of five filters for eight sites is tested 
in (10), with various land cover and slope conditions. An extensive qualitative and quantitative 
analysis is presented. Of note is the formal approach of the qualitative analysis, with the spatial 
extent of error types (such as vegetation or building errors) being determined and compared. (11) 
focuses on open-source algorithms, testing seven filters on two test sites located in a mediterrane-
an forest environment. Following an approach similar to (9), filtering errors are considered on a 
point-basis (type I and type II errors). The influence of factors such as ground slope, land cover or 
point density on the error rates is also investigated. 

The objective of this paper is to determine how filters perform in conditions of steep terrain and 
dense forest cover. The filters tested for this paper are all considered in at least one of the papers 
cited above and our approach to filtering is a common one. However, filtering performance is esti-
mated from a different perspective. Instead of considering the percent of incorrectly classified 
points, the magnitude of elevation errors in a DTM interpolated from the ALS point cloud is deter-
mined. To that extent, not only the number of incorrectly filtered points is relevant, but also their 
position (especially height above ground). Furthermore, we incorporate field data collected with 
survey-grade equipment into the analysis. 

METHODS 

Study area 

The area of interest is located in the Vâlcea County of Romania, near the Lotru Valley of the 
Southern Carpathians. The relief is mountainous with steep slopes and dense canopy cover, con-
sisting mostly of spruce (Picea abies Karts.) and beech (Fagus sylvatica L.) stands, both pure and 
mixed. Spruce average age is between 60 and 90 years and average height is around 25-30 me-
tres. Beech average age is between 80 and 100 years and average height is around 23-26 metres. 
Spruce stands do not have significant undergrowth, while stands where beech is predominant have 
around 0.2-0.4 undergrowth cover, with an average height of 2-4 metres. 

Mean Sea Level (MSL) of the study area is 630 metres. 

A study site with an area of 1.17 km2 mostly covered by forest was delimited for the purposes of 
evaluating the filtering performance of the algorithms considered. Figure 1 shows the extent of the 
study site and the field plot locations. 

For a better estimation of error magnitude, a topographical survey was carried out for eight field 
plots (seven plots with forest cover and one additional plot for reference) located near the study 
site. The characteristics of these plots are presented in Table 1. In the interest of clarity, we will 
hereafter refer to the large area previously described as the study site, the field survey sites as 
plots no.1-7 and the control site as reference plot. 
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Figure 1: Map of study site and field plots. Coordinate reference system: Universal Transversal 
Mercator, zone 35N. 

Table 1: Characteristics of field survey plots 

Field plot. num-
ber 

Area 

(m
2
) 

Average slope 

(degrees) 

Average canopy 
density 

(%) 

ALS data density 

 (points/m
2
) 

ALS data density 

(points in class 
ground/m

2
) 

Reference plot 2652 13.9 22.97 5.1 2.8 

1 1184 25.4 95.02 5.1 0.2 

2 988 27.1 96.73 7.8 0.2 

3 688 33.6 92.60 9.2 0.4 

5 1045 18.9 96.98 8.7 0.3 

6 1856 19.1 84.34 8.0 0.7 

7 1584 12.5 90.91 7.2 0.6 

8 889 21.4 77.90 8.3 0.7 

Average 1360.8 21.5 82.2 7.4 0.7 

St. dev. 644.5 7.0 24.8 1.6 0.9 

ALS data 

ALS data was collected with an airborne platform equipped with two RIEGL LMS-Q560 sensors, in 
two flight campaigns carried out in 2008 and 2011. No noteworthy meteorological or forestry-
related events took place between the two acquisition dates. Since there is a degree of overlap 
between the areas covered in the two flight campaigns, the average point cloud density for the 
study site is relatively high (15 points/m2). Both flight campaigns were taken in July, during full leaf 
phenophase. 
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The point cloud classification was provided by the company responsible for the data acquisition, 
using the Terrascan (Terrasolid) software package with additional manual corrections. An exten-
sive visual analysis of the classification result did not highlight any significant errors. The average 
density of the points in the ground class is 0.82 points/m2. 

Field survey data 

In order to record accurate elevation data for the eight field plots described in Table 1, topograph-
ical surveys were carried out using a Leica TCR 407 total station. All traverses were designed as 
closed or closed-loop, with control points positioned by GNSS measurements carried out by PPK 
(Post-Processed Kinematic) with two Leica SR20 receivers.  

Twelve GNSS points were measured, out of which four were used as base points for post-
processing. All points were positioned outside forest cover, in relatively unobstructed areas. A 15-
degree cut-off mask and a minimum of 5 SV (Satellite Vectors) for logging positions were set. Oc-
cupation time for base points was set at 90 minutes (5400 epochs), while points determined by 
rover were occupied for 30-45 minutes (1800 – 2700 epochs). All rover points are within 1-km 
range from the base point to which they were linked during post-processing. Most PDOP (Position 
Dilution Of Precision) values are between 1 and 3. 

Ground filtering 

ALS data is stored as 3D point clouds containing the pulse returns from the ground or various ob-
jects above it (such as power lines, buildings or vegetation). For each return, additional information 
(number of echoes, intensity, scan angle, GNSS timestamp) is recorded. In order to interpolate an 
accurate DTM, the points corresponding to the ground returns have to be extracted from the initial 
point cloud (12). This process is called ground-filtering or simply filtering (7,13). 

Algorithms for ground filtering 

Numerous algorithms for ALS data filtering have been developed in the last decades. The algo-
rithms included in this analysis are described below. 

 GroundFilter: an algorithm based on linear prediction, implemented in the Fusion software 
and based on (14). A surface is interpolated from all points, so lies between the ground and 
the top of the canopy. Then, weights are assigned to every point, based on its residual val-
ue (distance to surface). Among the parameters of the weighing function, of particular inter-
est are the shift value g (points with a negative residual larger than g are assigned a weight 
of 1.0) and the above ground offset parameter w (points with a positive residual larger than 
g+w are assigned a weight of 0.0). The process is iterative, the subsequent surface being 
attracted to points with higher weights (which are likely to be closer to the bare-earth sur-
face). The number of iterations is set by the user. Further referenced as Kraus & Pfeifer. 

 Maximum Local Slope: implemented in the free ALDPAT (Airborne LiDAR Data Processing 
and Analysis Tools) package and detailed in (9). In this implementation, a grid (with a cell 
size set by the user) is overlaid on the ALS data. A point is classified as ground if the max-
imum value of slope between it and any other point within a specified radius is above a set 
threshold (parameter slope). Further referenced as MLS. 

 Elevation Threshold with Expand Filter: also implemented in ALDPAT and detailed in (9). A 
grid of square cells is overlaid on the ALS dataset and the point with the lowest elevation in 
each cell is identified. All other points are considered above ground and therefore discard-
ed. In the next iteration, the grid cell size is doubled. All points inside a specific cell with el-
evation greater than a threshold above the minimum elevation of the cell are discarded. 
The elevation threshold is determined as the product between a terrain slope parameter 
and the current cell size. Further referenced as ETEW. 

 Height Filtering: part of the open-source software BCAL (Boise Center Aerospace Laborato-
ry) LiDAR Tools, is developed specifically for ground retrieval in areas covered by sagge-
brush vegetation (15). The algorithm is grid-based, with the cell size set by the user. A sur-
face is interpolated from the lowest point in each cell. Afterwards, all points that are below 
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the surface, along with points that are above the surface but not over a specified threshold, 
are labelled as ground. Further referenced as BCAL. 

 Multiscale Curvature Classification (16): distributed as a free executable (MCC-LIDAR). A 
surface is interpolated by TPS (Thin-Plate Spline) from the ALS data at a resolution defined 
by the scale parameter. Surface curvature is calculated and any returns that exceed the 
curvature threshold are labelled as non-ground and discarded. These steps are carried out 
iteratively until a convergence threshold is achieved. This process takes place three times, 
at multiple scale domains (0.5 times scale, 1 times scale and 1.5 times scale). All points 
that are still not discarded after the model converges at the third scale domain are classified 
as ground. The algorithm is specifically developed for ALS data filtering in high biomass 
forest environments. Further referenced as MCC. 

 gLidar (17): distributed as a free executable (GeMMA Lab). The algorithm uses a top-down 
approach, in which a surface interpolated by TPS is gradually advanced towards the 
ground. Starting from a resolution determined by window size, points are filtered out itera-
tively, at decreasing resolutions. Filtering is done by calculating the residuals of points from 
the interpolated surface. A top-hat transformation is used to compare residuals for neigh-
bouring points, in order to identify high-outliers which are removed. Further referenced as 
Mongus & Žalik. 

 Simple Morphological Filter (18): freely available as a tool for MATLAB (MathWorks). This is 
a progressive morphological filter, which uses mathematical morphology to identify ground 
points. A minimum raster surface is determined, using the lowest elevation of the points 
within each cell. Then, an iterative sequence of morphological operations (called opening 
and closing) are performed, taking into account a window size (the maximum size of above-
ground objects) and a slope value (the maximum terrain slope) set by the user. The product 
of this series of operations is the classification of each cell in the raster as either bare-earth 
or object. Ground elevation values for object cells are determined from neighbouring bare-
earth cells, by the interpolation technique of inpainting. Thus, the raster surface is a rough 
DTM used to classify the original point cloud. When the vertical distance between a point 
and the DTM does not exceed the elevation threshold (calculated as the sum between a 
base elevation threshold and a scaling factor applied to the terrain slope), that point is clas-
sified as ground. Further referenced as SMRF. 

 Lasground: a commercial filter, part of the LiDAR processing toolkit LAStools (Rapidlasso). 
The algorithm is similar to the adaptive TIN (Triangular Irregular Network) algorithm devel-
oped by (19). Details about the implementation are scarce, but generally an adaptive TIN 
filter works in this manner: a TIN is generated from seed points (lowest elevation within a 
user-defined grid) and is then progressively densified by adding points to the network. 
Whether a point is added or not depends on its distance to the TIN facet below it and the 
angles to that facet’s nodes. This process of TIN densification is carried out in iterations, 
until no further points are added. The final TIN should resemble the bare-earth surface and all 
its nodes are considered to be ground points. In the LAStools implementation, the ‘extra-fine’ 
parameter intensifies the search for viable seed points, improving the results for steep areas. 

 Lasground-new: a completely redesigned version of Lasground, which is intended for better 
performance in complex terrain (for example steep hills near built-up areas). Also part of 
the LAStools package (Rapidlasso). 

Algorithm optimisation 

Every algorithm tested requires a number of parameter values set by the user, which control the 
filtering process. It is not always clear which parameter values would lead to the most accurate 
filtering. Therefore, we establish a number of parameter combinations for each filtering algorithm, 
starting from the default values (or values proposed by authors of previous research) and incre-
menting and decrementing each parameter values, until no increase of performance is observed. 
Depending on the number of parameters that influence the accuracy of filtering, the number of 
combinations tested per algorithm is between 25 (for ETEW) and 104 (for Kraus & Pfeifer). 



EARSeL eProceedings 16, 1/2017 14 

For each of the 568 total combinations, the following approach is taken: 

 a DTM is generated via Inverse Distance Weighted (IDW) interpolation at a 1.0-m resolution; 

 the Root Mean Squared Error (RMSE) is calculated for that DTM, by subtracting the cell 
values of that DTM from the cell values of the reference DTM. The reference DTM is inter-
polated (also by IDW, 1.0-m resolution) from the points labelled as ground in the classifica-
tion provided by the company that acquired the data; 

Afterwards, the most accurate combination of parameter values (that leads to the lowest RMSE) is 
identified for each algorithm (Table 2). 

The optimisation of algorithms is carried out only for the study site, with the same parameter values 
applied when filtering ALS data for the field plots. 

Table 2: Final parameter combination for the algorithms tested; only parameters that are changed 
from their default values are shown. 

Algorithm Parameter values 

Lasground-new step = 20, extra-fine 

Lasground step = 4, extra-fine 

MLS cell size = 0.75, slope = 1.25, radius = 10 

SMRF 
cell size = 3.5, window = 9, slope = 0.4, scaling = 1.25, 

elevation threshold = 0.5 

ETEW cell size = 0.5, slope = 1.0, iterations = 5 

Mongus & Žalik window = 15, k = 0.0, n = 0.2 

MCC scale = 1.5, curvature threshold = 0.7 

Kraus & Pfeifer w = 1.6, g = -1.7, iterations = 4 

BCAL step = 13, threshold = 0.5 

Error analysis 

In addition to elevation errors, the errors relating to various products typically derived from a DTM 
are considered. These are: slope error, aspect error and feature classification error. The feature 
classification error refers to the differences between a feature map (with a classification of the ter-
rain as channels, ridges and planar areas) and the reference feature map. 

Influence of ALS point density on filtering accuracy 

To better understand the effect of the point cloud’s density on the filtering accuracy, the initial da-
taset was artificially reduced, by randomly eliminating 60 percent of the points, in 10 percent in-
crements. RMSE values are calculated for each reduced dataset.  

RESULTS 

RMSE values for filtering algorithms 

The RMSE values of the elevation errors for each of the filtering algorithms are presented in Ta-
ble 3, along with the total number of points identified as ground.  

Overall, the most accurate filtering is achieved by the Lasground-new algorithm, closely followed 
by its older version Lasground. Both are based on TIN-densification. These are followed (in terms 
of RMSE values) by the three algorithms based on surface-interpolation (MLS, SMRF, ETEW) and 
the four algorithms that use mathematical morphology (Mongus & Žalik, MCC, Kraus & Pfeifer, 
BCAL). These findings are in part confirmed by the RMSE values for field plots, where the DTM 
interpolated from the filtered ALS data is compared against the DTM interpolated from ground sur-
vey data (Table 4). 
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The reference plot was surveyed to serve as a benchmark for contrasting RMSE values. It is locat-
ed outside forested areas and is partly covered with shrubs. Note that most of the algorithms have 
similar performances here, with RMSE values between 0.25-0.30 m. Field plots no. 1-3 are located 
in mixed spruce/beech stands and have higher RMSE values than field plots no. 4-7 (located in 
spruce stands). This might imply a certain influence of forest composition on the accuracy of 
ground filtering.  

Table 3: RMSE values for elevation error and number of points in class ground identified. 

Algorithm 

RMSE study site 

all returns 

(m) 

RMSE study site 

last returns 

(m) 

Change in 
RMSE (%) 

RMSE average 
for field plots 

(m) 

No. of points 
in class ground 

(mil.) 

Lasground-new 0.34 0.38 + 12% 0.66 2.37 

Lasground 0.53 0.52 - 2% 0.68 3.07 

MLS 0.56 0.61 + 9% 0.68 0.91 

SMRF 0.60 0.62 + 3% 0.70 3.60 

ETEW 0.61 0.65 + 7% 0.72 1.62 

Mongus & Žalik 0.76 0.74 - 3% 0.73 3.61 

MCC 0.79 0.67 - 15% 0.88 3.56 

Kraus & Pfeifer 1.23 1.36 + 11% 0.99 0.59 

BCAL 2.25 2.42 + 8% 3.14 1.99 

Table 4: RMSE values for elevation error for field plots. 

Algorithm 

Ref. 
plot 

(m) 

Plot 1 

(m) 

Plot 2 

(m) 

Plot 3 

(m) 

Plot 4 

(m) 

Plot 5 

(m) 

Plot 6 

(m) 

Plot 7 

(m) 

Avg. RMSE 
for algo-
rithm (m) 

St. dev. of 
RMSE 
values 

(m) 

Coefficient 
of variance 

of RMSE 
values (%) 

Lasground-new 0.25 0.92 1.04 1.24 0.40 0.54 0.31 0.59 0.66 0.36 55 

Lasground 0.26 0.97 1.04 1.24 0.40 0.56 0.33 0.67 0.68 0.36 53 

MLS 0.25 0.99 1.09 1.23 0.38 0.54 0.31 0.66 0.68 0.38 55 

SMRF 0.27 1.03 1.09 1.30 0.42 0.55 0.32 0.64 0.70 0.39 55 

ETEW 0.26 1.02 1.27 1.24 0.40 0.56 0.32 0.66 0.72 0.41 57 

Mongus & Žalik 0.26 0.99 1.14 1.29 0.41 0.55 0.47 0.74 0.73 0.37 51 

MCC 0.26 1.41 1.04 1.39 0.47 0.57 0.46 1.43 0.88 0.49 56 

Kraus & Pfeifer 0.50 1.56 1.22 1.30 0.57 1.22 0.59 0.94 0.99 0.40 40 

BCAL 0.49 5.90 5.51 2.28 5.84 0.99 2.02 2.08 3.14 2.25 72 

Avg. RMSE for 
plot 

0.31 1.64 1.60 1.39 1.03 0.68 0.57 0.93 - - - 

The RMSE values for the field plots are significantly higher than the RMSE for the study site, for 
every filtering algorithm tested. Likely causes for these increased error values are: the high canopy 
density of the field plots (minimum 78%, average 82%) limiting ALS ground penetration, errors in-
herent to surveying and effects of surface interpolation. The fact that filter parameters were opti-
mised only for the study site (not for the field plots) also has to be taken into account. 

The number of ground points identified by each algorithm varies from 0.59 mil. points to 3.61 mil. 
points (Table 3). When comparing with the number of ground points as identified by the data provider 
(1.3 mil. points), it seems that most algorithms fail to filter out a significant number of non-ground 
points. Possibly a large number of these omitted points are closer to the ground surface (for example 
returns from understory vegetation) so their impact on the overall RMSE is relatively low. The height 
above ground of unfiltered non-ground points affects the RMSE, rather than their number.  
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RMSE values are also determined for working only with the last returns of each laser pulse. The 
changes in accuracy suggest that using only these last returns does not have a significant impact 
on the filtering result for the study site, with most results having a relatively low decrease in accu-
racy (Table 3). A notable exception is the Multiscale Curvature Classification algorithm, for which 
the overall accuracy increases by 15%. 

Spatial distribution of errors 

In order to analyse the spatial distribution of the elevation errors, the values were classified. Class 
boundaries were established taking into account technological considerations of forest operations 
(such as forest harvesting). Besides elevation error, the slope, aspect and feature classification 
error was also determined. All error values are transformed to absolute values. Class boundaries 
are presented in Table 5. 

The area coverage for each error class is presented for Lasground-new and MLS, two of the best 
performing algorithms (Table 5). The classified elevation errors are also presented in graphical 
form for the filtering result of the Lasground-new algorithm (Figure 2). 

 

Figure 2: Map of classified elevation errors resulting from filtering with the lasground-new (Rapid-
lasso) algorithm. 
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Table 5: Classification of elevation, slope, aspect and feature classification errors. 

Type of error Error class 
Upper/lower limit of 

class 

Area coverage 

(percent of study site area) 

Lasground-new MLS 

Elevation error 

(metres) 

Negligible under/over estimation 0.00 0.20 84.24 79.96 

Low under/over estimation 0.20 0.50 10.82 13.36 

Significant under/over estimation 0.50 1.00 3.24 3.86 

High under/over estimation 1.00 - 1.70 2.81 

Slope error 

(degrees) 

Negligible under/over estimation 0.00 5.00 88.62 85.22 

Low under/over estimation 5.00 10.00 7.82 9.88 

Significant under/over estimation 10.00 20.00 2.70 3.34 

High under/over estimation 20.00 - 0.86 1.55 

Aspect error 

(degrees) 

Negligible under/over estimation 0.00 5.00 70.28 62.55 

Low under/over estimation 5.00 10.00 18.06 21.83 

Significant under/over estimation 10.00 25.00 8.34 10.62 

High under/over estimation 25.00 - 3.32 5.00 

Feature classifica-
tion error 

Correct classification 

- 

91.98 93.41 

Planar areas incorrectly classified 2.32 2.15 

Channel areas incorrectly classified 2.77 2.10 

Ridges incorrectly classified 2.93 2.33 

Effect of ALS point density on the accuracy of the ground surface representation 

As expected, the decrease of the ALS point density has an impact on the accuracy of the generat-
ed ground surface. However, the increase in RMSE values is not consistent across algorithms 
(Figure 3). Note for example the significant decrease in accuracy for Lasground (almost 60% in-
crease in RMSE at 40% ALS point density), compared with the relatively stable accuracy for the 
MLS algorithm (less than 30 percent increase in RMSE for the same density). This could be linked 
to the fact that MLS is based on mathematical morphology, a method that might fare better at lower 
point densities when compared to the surface or TIN-based interpolation methods. This would ex-
plain the relatively low decrease of accuracy for SMRF, another morphological filter. 

 

Figure 3: Increase of RMSE values with decreasing ALS point density. Only the five best perform-
ing algorithms are represented. 
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Elevation errors in relation to ground slope 

The average RMSE of elevation errors (with filtering by Lasground-new) for each field plot was 
found to be related with the average slope of the plots, as determined from the ground survey data 
(Figure 4). The correlation coefficient (adjusted R2) is 0.89. The reference plot was excluded from 
the correlation analysis. 

 

Figure 4: Correlations between average RMSE of elevation values and average slope, for survey 
field plots. 

While this indicates that the variability of RMSE could be explained by the average slope of a field 
plot, in order to extrapolate such a claim to other terrain and canopy conditions significantly more 
data points would be required. Such an analysis goes beyond the scope of the present research. 

CONCLUSIONS 

Automatic ground filtering of ALS data for steep, forested areas can lead to results comparable in 
accuracy to those obtained via manual classification, but requires an extensive process of parame-
ter optimisation. However, this is relatively straightforward when compared to the process of man-
ual classification. At least as important as the choice of parameters is the choice of the filtering 
algorithm itself. The RMSE values for the nine algorithms included in this analysis range from 0.34 
to 2.25 metres, with a coefficient of variance of 64 percent.  

The most accurate results were produced by Lasground-new, with algorithms such as Lasground, 
MLS or SMRF also leading to relatively good ground surface representations. Relatively poor per-
formances were given by Kraus & Pfeifer and BCAL. For the first one, this could be explained by 
the fact that linear-prediction is not particularly suitable for steep terrain with variable topography 
(20). In the case of BCAL, the poor performance is expected when considering that the algorithm 
was developed for the specific purpose of terrain extraction in saggebrush conditions, which are 
very different from high biomass forest environments. 

Field plot data suggests an apparent correlation between ground slope and filtering accuracy (ad-
justed R2 = 0.89). While this is in line with previous research (21,22,12), for further investigations 
more data points are required. 

ALS point density is also found to have an effect on the accuracy of the surface representation, but 
the effect varies between algorithms. Our initial findings seem to suggest that morphological filters 
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(such as ETEW or SMRF) fare somewhat better at lower ALS point densities but this is yet to be 
confirmed. 

Further research would benefit from a more extensive ground survey and additional filtering algo-
rithms to test. Of importance is also a better understanding of possible filtering error sources, such 
as canopy density, forest composition and surface ruggedness.  

Overall, given the fact that forest environments are a challenge for any filtering approach (11,23,6), 
especially when data is collected in leaf-on conditions, we find that the results are promising. The 
best result for the study site has a RMSE value of 0.34 metres, with over 80 percent of the area 
having an elevation error below 0.20 metres and a slope error below 5 degrees. Given the fact that 
about 5% of the study area has an elevation error of more than 0.50 metres, manual corrections 
are needed to ensure high-quality products are obtained. 

In summary, ALS data can be a solution for collecting geomorphological data for forestry applica-
tions, as long as one takes into account the extensive parameter optimisation necessary to obtain 
an accurate surface representation. The fact that only a small percentage of the laser pulses reach 
the ground in densely forested areas, especially in leaf-on conditions, limits the applicability of ALS 
data when a fine scale representation of the ground surface is required. 
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