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ABSTRACT 
The Bavarian Forest National Park, established in 1970, is a unique area of forests with large non-
intervention zones, which promote a large-scale rewilding process with low human interference. 
Thus, the National Park authority is particularly interested in investigating the structure and dynam-
ics of the forest ecosystems within the park. However, conventional forest inventories are time-
consuming and not able to fully record the heterogeneity of natural forests. 

Our goal is to develop advanced techniques for tree species mapping based on hyperspectral re-
mote sensing in combination with other remote sensing and in situ measurements that meet the 
demands of the National Park. This approach needs to be adapted to the heterogeneous appear-
ance of the forest. 

This work aims at building a model transferable to an area-wide mapping of tree species based on 
the needs of the Bavarian Forest National Park. It reveals the requirements for tree species map-
ping and shows which spectral/spatial features and data combinations generate the best results 
within a Random Forest modelling approach. 

The study is based on airborne hyperspectral data acquired with the HySpex VNIR-1600 sensor 
(160 spectral bands, 400 – 990 nm, 1.6 m spatial resolution). Additional full waveform LiDAR data, 
including a Digital Surface Model, Digital Terrain Model and a Digital Canopy Height Model, were 
available for the analysis. Individual tree crowns as well as clusters of tree crowns from 13 different 
tree species were located and identified during a field survey. The field-demarcated tree canopies 
were used as reference data for creating the feature database. 

Several preprocessing steps including atmospheric correction, spectral and spatial polishing, bidi-
rectional reflectance distribution function (BRDF) effect correction as well as ortho-rectification of 
the hyperspectral imagery were conducted before the analysis. A band selection procedure based 
on principal component analysis, band correlation, and band variance was performed to identify 
the most appropriate spectral bands for species discrimination, resulting in a set of 53 spectral 
bands. Seven different combinations of hyperspectral, structural and terrain-specific parameters 
contained in the feature database were investigated in a Random Forest Modelling approach to 
ascertain which variables enhance the overall classification accuracy. A classification model using 
all available parameters in the feature database yielded an overall accuracy that is 17 percentage 
points higher (94%) compared to using only the preselected spectral bands (77%). For most of the 
13 tree species, the final classification model achieved individual class accuracies of more than 
90%. 

The study showed that a tree species feature database consisting of hyperspectral signatures and 
relatively simple LiDAR derived features has high potential for a forest inventory based on remote 
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sensing. A model transferable to an area-wide mapping of tree species based on the needs of the 
Bavarian Forest National Park was established. 
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INTRODUCTION 
The Bavarian Forest National Park (BFNP) covers different forest structures of various age stages 
including large deadwood areas hosting a high biodiversity. Basically, the forests in the BFNP are 
characterised by heterogeneous species mixtures and age classes. The main tree species are 
Norway spruce (Picea abies) and European beech (Fagus sylvatica), but there are many other 
plant species, especially in the understorey. The BFNP is a habitat with a large non-intervention 
zone and a great structural variety due to the predominant natural dynamic. The national park is 
therefore a suitable field of research (Ecological Baseline Area) to study natural and near-natural 
ecosystem processes and serves as reference for long-term monitoring. To effectively protect and 
manage forest ecosystems, the species composition, especially distribution, proportion and mixture 
of rare species, must be understood. This is important for understanding natural forest dynamics. 

The BFNP conducts forest inventories periodically to monitor the species composition. Conven-
tional forest inventories mainly focus on measuring the growing stock and its increment, since they 
are adapted to the purpose of the economic forestry with large homogenous forest stands. The 
national park authority aims at replacing these time-consuming and expensive methods of forest 
inventory (random sample) with advanced remote sensing techniques (area-measured) that will 
provide the foundation for research and national park management (1,2). These advanced tech-
niques need to be adapted to the heterogeneous characteristics of the BFNP which comprises 
larger standing and lying deadwood as well as mixed stands and the appearance of rare tree spe-
cies with less than 1% coverage. 

Optical remote sensing data provide information on the spectral properties of tree canopies and 
are commonly used for forest inventory approaches. In order to capture the complex inter- and 
intra-species spectral variability resulting from differences in environmental and physical factors 
(seasonality, soil composition, landform or natural phenological changes), a sensor with high spec-
tral resolution is required. Hyperspectral data have shown good performance for tree species dis-
crimination in different types of forest environments, ranging from tropical (3) to boreal (4). How-
ever, the quality of classification is limited by different factors, e.g., high intraspecies spectral vari-
ability and interspecies spectral similarity as well as illumination and scattering (5,6). Therefore, a 
forest inventory based on the sole use of spectral information may result in a relatively low accu-
racy, implying that additional information related to tree species is required. Several remote sens-
ing studies highlighted that structural and topographic information may help to reduce spectral con-
fusion and play important roles in assisting tree species classification (7,8,9). Actual forest inven-
tory approaches of the BFNP authority utilise active sensors measurements, such as LiDAR, to 
gain structural information for tree species classification. However, based on the current state of 
the art, only discrimination between coniferous and deciduous trees or deadwood is feasible 
(1,10). The integration of hyperspectral data with information obtained from LiDAR data has been 
proved to be a promising approach for improving the accuracy of forest inventory and ecological 
modelling at landscape scale (11). 

The described work aims at developing a multi-source approach for tree species mapping that 
meets the demands of the Bavarian Forest National Park. The overall goal is to develop a classifi-
cation model to identify not only the main tree species, but also rare species that are of high inter-
est to the National Park. The method needs to be robust when it comes to the involvement of multi-
sensoral and multi-temporal data; and the transferability of the method within the BFNP as well as 
its repeatability must be ensured. To meet all these requirements, it is suggested to develop a fea-
ture database for each tree species including spectral, structural and site-specific attributes. 
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The research objectives of the present study can be summarized as follows: 

1. Selection of features for the different tree species 

2. Generating of classification model for tree species mapping using Random Forest 

3. Evaluation of results. 

METHODS 
This section describes the conceptual overview of the study, the study material, the creation of the 
feature database and finally the mapping of the tree species in detail. 

Conceptual overview 
An overview of the performed analysis is given in Figure 1. Different parameters derived from the 
input data are merged in a feature database. This database is used as input for a classification 
model using Random Forest to perform the tree species mapping. 

 
Figure 1: Flowchart of the performed analysis  

Study Area 
The Bavarian Forest National Park (Latitude 48°58’N, Longitude 13°23’E) is located in south-
eastern Germany within the two rural districts of Regen and Freyung-Grafenau along the border 
with the Czech Republic. It is part of the region Bavarian Forest in Eastern Bavaria and covers an 
area of 24,218 ha. Together with the neighbouring Czech Bohemian Forest, the Bavarian Forest 
forms one of the largest continuous forest areas in Central Europe (12,13). 

The Bavarian Forest National Park (BFNP) was established in 1970 as the first national park in 
Germany. It reaches from 600 m above sea level in the lower valley areas to the ridges with the 
highest elevations Großer Rachel (1,453 m a.s.l.), Lusen (1,373 m a.s.l.) and Großer Falkenstein 
(1,315 m a.s.l.). The mean elevation of the BFNP area is approximately 930 m. The BFNP can 
generally be divided into a northern part, the Falkenstein-Rachel region, which was added to the 
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national park in 1997 and a southern part, the Rachel-Lusen region, which was declared a national 
park in 1970. 

Three major forest types are found within the national park. Above 1,100 m a.s.l. (16% of the area), 
sub-alpine spruce forests with Norway spruce (Picea abies) and some common rowan are prevail-
ing. On the slopes, between 600 and 1,100 m a.s.l. (68% of the area), mixed montane forests with 
Norway spruce, silver fir, European beech and sycamore maple (Acer pseudoplatanus) occur. 
Spruce forests with Norway spruce, mountain ash and birch (Betula pendula, Betula pubescens) 
predominate in wet depressions at the bottom of valleys (16% of the area) often associated with 
cold air pockets. Since the mid-17th century, the area of the current national park has been man-
aged, which has led to a dramatic change in tree species composition. Silver fir originally ac-
counted for at least 30% of the mixed mountain forests and decreased to the current <3% (14). In 
the mid-1990s, spruce trees of the national park were massively attacked by the spruce bark bee-
tle (Ips typographus), which resulted in the death of mature spruce stands over an area amounting 
to 6,000 ha by 2006 (15). 

Input Data and Preprocessing 
Different data sources have been used to develop the feature database. An overview of the exist-
ing data is given in Table 1. Information about the preprocessing and the quality of the data is de-
scribed in the following. 

Table 1: Available remote sensing data for used to develop the feature database 

Data Sensor Acquisition date Specifications 
Hyperspectral HySpex-VNIR 1600 July 2013 Geometric resolution: 1.6 m 

Bandwidth: 3 nm 
LiDAR LMS-Q 680i 

350 KHz-Scanner 
July 2012 Geometric resolution (DTM):1 m

Point density: >30/m²  
Orthophotos DMC Camera Z/I Imaging June 2014 Geometric resolution: 20 cm 

Forest inventory Measurement by ground personnel 2002/2003 200 m raster 

Forest Inventory 

Table 2 shows the fraction of tree species occurring in the National Park according to the forest 
inventory of 2002/2003. The inventory results are used for verification of the tree species mapping. 

Table 2: Relative amount of tree species in the BFNP based on the results of the forest inventory in 
2002/2003 (16) 

Scientific Name Common Name Relative amount 
Picea abies Norway spruce 67.0% 
Fagus sylvatica European beech 24.5% 
Sorbus aucuparia Common rowan 3.1% 
Abies alba Silver fir 2.6% 
Acer pseudoplatanus Sycamore maple 1.2% 
Betula pendula European white birch 0.7% 
Pseudotsuga menziesii Douglas fir 0.2% 
Larix decidua European larch 0.1% 
Pinus sylvestris Scots pine 0.1% 
Alnus glutinosa European alder 0.1% 
Populus tremula European aspen 0.1% 
Fraxinus excelsior European ash 0.1% 
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Hyperspectral data 

Hyperspectral airborne data was acquired with the HySpex VNIR-1600 sensor on 22nd and 27th 
July 2013. A total of 31 lines were collected, covering 65% of the BFNP area. The flight lines are 
shown in Figure 2. The VNIR data sets were acquired with a spatial resolution of 1.6 m at ground 
scale and a spectral bandwidth of 3 nm. 

 
Figure 2: Red polygons mark the covered areas of the HySpex flight campaign within the BFNP. 

Several aspects influence the mapping accuracy. Besides the signal-to-noise ratio and atmos-
pheric conditions during data acquisition, the mapping quality is also dependent on the variable 
viewing and illumination geometry. Preprocessing is necessary to remove atmospheric and geo-
metric distortions from the imagery before the analysis of the tree species classification can be 
carried out. 

The German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) holds a 
processing chain which generates standardised data products automatically, allowing the data to 
be reproduced easily at any time. The general processing steps as described in (17) comprise 
system correction, atmospheric correction (18) and geometric correction (19). Additional process-
ing steps conducted as part of this study are spectral and spatial polishing, bidirectional reflectance 
distribution function (BRDF) effect correction and mosaicking (20). Regarding the radiometry, the 
aim of the different preprocessing steps was to reduce random noise and local intra-class variabil-
ity while retaining the spectral features, as well as to increase the signal-to-noise ratio without 
greatly distorting the signal (21). 

LiDAR Data 

The BFNP provided LiDAR-derived terrain and surface raster products (e.g. digital canopy model, 
aspect, slope), which can be used as additional inputs for classifying tree species. The full wave-
form LiDAR data was acquired in July 2012 with a LMS-Q 680i - 350 kHz - Scanner of the Milan 
Geoservice GmbH with a last pulse point density of approximately 25-30 points per square metre, 
a spatial resolution of 1 m and a height accuracy of approximately 7 cm. A digital terrain model 
(DTM) and a digital surface model (DSM) at a 1 m × 1 m raster grid, respectively, were available 
for this analysis. A digital canopy model (DCM) which represents the tree heights was calculated 
as the difference between DSM and DTM. The LiDAR-derived terrain and surface raster products 
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were used as additional inputs for classifying tree species. The standard deviation of the DTM is 
24 cm, whereas the height accuracy of the LiDAR measurements amounts to 15 cm, and the posi-
tional accuracy to 40 cm (22). 

Orthophotos 

Aerial photos of the BFNP are acquired every year for monitoring purposes. The orthophoto for this 
study was available in RGB and CIR with a ground resolution of 0.2 m, respectively. It was ac-
quired in June 2014 with an Intergraph® Z/I Imaging Digital Mapping Camera (DMC) of ILV-
Fernerkundung GmbH. The orthophoto was used during the acquisition of reference trees and for 
validation purposes of the tree species mapping. 

Creation of a forest mask 

A tree mask was defined to ensure that only trees are classified. This tree mask prevents misclas-
sification between trees and other vegetation in the imagery (23). 

The tree mask is derived from the LiDAR canopy height model and the optical remote sensing da-
ta. For compiling the tree mask, two different methods as illustrated below are applied independ-
ently and merged together afterwards. 

1. To discriminate between vegetation and non-vegetation, i.e., to exclude other land-cover 
types such as soil, water, rocks, urban areas as well as deadwood, a Normalised Differ-
ence Vegetation Index (NDVI) image was calculated from the HySpex VNIR data. For each 
vegetation type and zone an individual threshold needs to be set for distinguishing between 
vegetation and non-vegetation. After evaluating the resulting NDVI image, the threshold is 
set to 0.4, derived by slight alteration of a broadband threshold for vegetation proposed by 
24. All values below the threshold are masked out as non-vegetation. 

2. Eliminating forest gaps and low canopy heights can improve the classification of different 
tree species (24). This can be realized by thresholding the LiDAR-derived tree height map. 
A tree height threshold of 2 m as proposed by 24 was slightly altered. A threshold of 1.5 m 
is selected as the minimum height for classification in order to include young trees, such as 
pioneer tree species like European white birch or European rowan (25) which are typically 
found in the deadwood areas of the BFNP. 

 
(a)                                                                         (b) 

Figure 3: Northern HySpex VNIR mosaic as colour infrared image (a) and derived forest mask (b). 

The final forest mask was derived by combining the reclassified index image and tree height mask 
(i.e., the intersecting set). The resulting forest mask is shown in Figure 3b where masked pixels are 
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presented in black and forest pixels in white. According to visual evaluation the separation of green 
vegetation and urban areas, bare soil, roads or deadwood was successfully obtained using the 
NDVI. With additional information from the LiDAR DCM all objects with a minimum height of 1.5 m 
could be selected and shrubs, grassland and other objects with low height were successfully elimi-
nated. 

Creation of a spectral, structural, and terrain-specific feature database 
For the classification of tree species, a feature database was created, consisting of several differ-
ent input parameters. The classification approach was based on tree species spectral and struc-
tural information as well as terrain information. For classifying only tree or forest pixels, the data 
has to be separated into forest and non-forest. 

Development of the reference data set 

Reference data were collected for the analysis of tree species. During a field trip in October 2014, 
the locations of 13 different tree species were identified and marked in the orthophoto. In a first 
step, regions of possible occurrence of the different tree species were discussed with National 
Park rangers. The trees were selected based on their accessibility and their tree height. Only trees 
or forest regions with tree heights of more than 1.5 m were selected. Only few stands with trees of 
a single species were identified, because apart from Norway spruce and European beech no other 
homogeneous forest areas occur in the National Park. Trees from inaccessible higher areas could 
be selected from homogeneous regions in the orthophoto, knowing that above 1000 m only stands 
of European beech and Norway spruce occur. The tree species listed in Table 2 were always lo-
cated in mixed areas with three or more species (except for Norway spruce and European beech). 
Tree crowns and clusters of trees marked in the orthophoto were manually digitised over the Hy-
Spex VNIR images. The resulting polygon features were then converted to regions of interest 
(ROI). Since each ROI includes an entire crown or clusters of crowns, shaded pixels or pixels with 
different illumination due to the crown structure were included as well. The in situ data were used 
as reference data for creating the tree species feature database. 

Hyperspectral band selection 

Spectral analysis of tree species strongly depends on the quality of reference spectra collected 
from the image. In order to find the best spectral bands for tree species discrimination, a band se-
lection procedure was conducted. For statistical analysis such as feature selection, it is important 
to focus on spectral shape rather than on brightness differences (26). Specific spectral features 
can be analysed through spectral normalization. Spectral features become more apparent in a 
normalized spectrum, which supports the selection of best bands. The spectra were normalized 
using spectral mean normalization as proposed by (27). Normalization was only performed to sup-
port band selection. The spectra of the selected bands are not normalized for classification, be-
cause the amplitude difference especially between coniferous and deciduous trees is an important 
feature for their discrimination. 

In order to reduce computing time and to avoid possible over-fitting, a band selection procedure 
was performed by removing bands that provide redundant spectral information from the analysis. 
The goal is to retain important key wavebands for tree species and avoid reducing the discrimina-
tion power that results in classification models with lower accuracies. Therefore, a band selection 
procedure was performed using the normalized reference tree species spectra instead of using the 
whole HySpex images. In this study, a combination of three different methods was used to find the 
best bands for discriminating between tree species. Figure 4 shows the process of hyperspectral 
band selection based on band variance and band correlation as well as correlation of the bands 
with the components of a principal component analysis (PCA), calculated with normalized spectra. 

The importance of the hyperspectral wavelengths in each principle component (PC) can be deter-
mined based on the magnitude of the factor loadings, which correspond to the correlations be-
tween wavelengths and PCs. The loadings of the first three principal components (PC 1, PC2 and 
PC3) are shown in Figure 5. PC2 and PC3 show high importance of bands located in the blue (at 
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430 nm), green (at 550 nm), red (at 740 nm) edges and NIR (at 970 nm) region. Therefore, the 
absolute values of PC2 and PC3 were considered as best measure for selecting the best bands. 

 
Figure 4: Process of hyperspectral band selection for tree species classification 

 
Figure 5: Factor loadings of first three components of the PCA, calculated using normalized tree 
species reference spectra. 

The correlation matrix was calculated and highly correlated bands were removed. A threshold of 
R² > 0.98 was derived by trial and error. 

The band variance in an image can be used as a basis for selecting hyperspectral features (26). 
Therefore, the bands with the highest values were selected by searching for local maxima in the 
variance data. 

The three band selection methods were applied independently on the full tree species spectral 
library consisting of 16,808 reference spectra from 160 HySpex VNIR bands. In a final step, the 
best bands of each method were merged together: A frequency threshold was set to extract the 



EARSeL eProceedings 14, Special Issue 2, 2015-16:  
9th EARSeL Imaging Spectroscopy Workshop, 2015 57 

bands which were selected from the three methods at least two times. This threshold was chosen 
in order to ensure enough accordance between the methods and to maintain enough important 
spectral bands. 

Vegetation Indices 

To accentuate the differences between tree species for their better distinction, vegetation indices 
were calculated and used in the feature database. Vegetation indices are commonly applied met-
rics for forest type classification, species discrimination, and estimates of plant species richness 
(28). Four vegetation indices were selected based on their suitability to distinguish between tree 
species according to different canopy structure, leaf area index (LAI), chlorophyll content and vital-
ity of the trees, namely: 

 Simple Ratio (SR): SR combines the wavelength with highest reflectance for vegetation and 
the wavelength of the deepest chlorophyll absorption. It is calculated as the NIR to red ratio 
(29), and is most commonly used to estimate over-story LAI and to predict wet and dry 
green biomass and fractional vegetation cover: 
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 Narrowband Red Edge Normalised Difference Vegetation Index (RENDVI): The RENDVI is 
an adapted narrowband version of the NDVI proposed by (30). It makes use of the sensitiv-
ity of the vegetation red edge to small changes in canopy foliage content, gap fraction, and 
senescence. Applications of the RENDVI include precision agriculture, forest monitoring, 
and vegetation stress detection (31): 
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 Red Edge Inflection Point (REIP): The REIP is defined as the point of maximum slope of 
the increase from red to NIR reflectance, i.e. the maximum of the first derivative of reflec-
tance between 650 nm and 750 nm (32). Even though it is mainly applied for agricultural 
purposes, its high correlation with the chlorophyll content of the leaves and LAI makes it 
suitable for forest applications as well (33,34). 
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 Photochemical Reflectance Index (PRI): PRI is one of the most effective physiology-
oriented hyperspectral vegetation indices, developed by (35). It is a viable indicator used to 
measure light use efficiency at leaf and canopy levels (28,31): 
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The four different vegetation indices were chosen for including information from different portions 
of the spectra, such as vegetation greenness, light use efficiency and leaf pigments. They are also 
relatively insensitive to shadow comparable to the shaded pixels. 

Terrain-specific features from LiDAR data 

Forests are typically characterized by landscape-level variations caused by factors such as topog-
raphy or soil. The explicit inclusion of physiographic and topographic information in the form of 
slope, aspect and elevation, as proposed by (8) may increase classification accuracy of tree spe-
cies. Aspect and slope provide information about exposition and steepness of the terrain and serve 
as important ecological information about site quality or sunlight availability allowing conclusions to 
be drawn about site-specific information of the different tree species. Variations in elevation can be 
correlated with variations in tree species composition and can therefore be used to identify patterns 
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in forest composition (9). Information about tree height as well as abiotic variables including topog-
raphic variables derived from the DTM were used as additional input features for tree species clas-
sification. Tree height has proved to increase tree species classification accuracy in recent forest 
inventory applications (7,6,36). In addition, the illumination conditions are considered with the in-
clusion of a hill shade illumination map. Values range from 0 (shadow) to 1 (light) (37). 

Mapping of tree species – Generation of classification model 
The created tree species feature database consisting of 62 parameters (53 spectral bands, five 
LiDAR-derived parameters, and four vegetation indices) and 16,808 samples/pixels was used for 
creating a classification model. The most frequently used non-parametric classifiers used for tree 
species classification with combined hyperspectral and LiDAR data are support vector machines 
(SVM) and Random Forest (RF) (11). Both classifiers can deal with large input spaces and have 
achieved very good classification results in previous forestry applications using multi-source data 
(38,6,36). Furthermore, 4 found that there is no significant difference between SVM or RF classifi-
ers when used in tree species classification based on hyperspectral data. However, RF is less 
computing intensive and time-consuming due to the lower level of complexity and required cus-
tomization (36). RF was thus considered to be the most suitable approach for classifying various 
tree species in the BFNP. 

Before the RF classification model was created, the reference feature database was divided into 
training and test data in order to obtain a test data set. Using the RF internal so-called out-of bag 
(OOB) sampling procedure, there is no need for cross-validation or a separate test set, especially 
when there are only  limited samples for  ndependent accuracy  assessments  (39,40).  However, 
several studies propose an independent validation dataset when using RF to remove any possible 
bias and to assess the generalization ability of the classification model (3,4,41). 

In order to provide a sufficient number of training pixels and to avoid possible over-fitting, the num-
ber of training pixels per class extracted from n variables (here: 62) should at least be > 10n pixels, 
with desirably 100n pixels (42

,
43). To keep at least 10 · 62 = 620 training pixels for each tree spe-

cies, only the reference data of six tree species, namely sycamore maple (AP), European white 
birch (BP), European beech (FS), Norway spruce (PA), European larch (LD), and European silver 
fir (AA), were selected and randomly split into 2/3 training and 1/3 test data afterwards. 

Several studies proved that RF, similar to most classifiers, also suffers from the curse of learning 
from an extremely imbalanced training data set. It will tend to focus more on the prediction accu-
racy of the majority class, which often results in poor accuracy for the minority classes (44

,
4). 

Since the training data set is highly imbalanced, a stratified down-sampling approach with re-
placement was applied to equalize sample sizes. Regarding the RF model, the entire dataset will 
still be utilized for the forest as a whole, but each individual tree will be grown from a defined ran-
domly drawn sub-sample of the data. This balanced down-sampling approach prevents loss of 
information in the prevalent classes (44). 

a. Image classification 

Classification was performed on a pixel-by-pixel basis. Since the classification models also contain 
information derived from the LiDAR data as well as vegetation indices, the respective raster data 
needed to be stacked. The stacked images then consisted of 62 bands including five LiDAR-
derived images, four vegetation index maps, and the masked HySpex VNIR images with 53 spec-
tral bands. 

b. Validation / Plausibility checks 

To evaluate the classification accuracy, one third of the above-mentioned reference data (including 
only six tree species) not involved in the learning process of the classifier was used as test data 
set. The test pixels were selected randomly from the reference data using stratified random sam-
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pling based on tree species. The accuracy of the remaining seven tree species was estimated us-
ing the RF internal OOB error estimates. 

In addition to the statistical evaluation of the model classification result, visual interpretation based 
on the knowledge acquired during research and field studies is used to check for plausibility. 

The result of the forest inventory gives indicative values about the percentages of the different tree 
species. 

RESULTS 
Feature database - Reference data set analysis 
Tree species reference spectra 

The ground truth data of the 13 tree species obtained during the field campaign were used as ref-
erence. Table 3 shows the number of pixels resulting from the tree species ROIs. The number of 
pixels equals the number of reference spectra per species. 

Table 3: Description of the 13 tree species and respective number of sample plots with number of 
resulting reference spectra 

Common Name Scientific Name Acronym Type Leaf Phenology No. of 
Sample 
Plots 

No. of 
Pixels 

Sycamore maple Acer pseudoplatanus AP Broadleaf Deciduous 47 1,461 

European aspen Populus tremula PT Broadleaf Deciduous 9 246 

European white birch Betula pendula BP Broadleaf Deciduous 49 1,107 

European beech Fagus sylvatica FS Broadleaf Deciduous 15 5,829 

Douglas fir Pseudotsuga menziesii PM Conifer Evergreen 5 239 

European alder Alnus glutinosa AG Broadleaf Deciduous 18 622 

European ash Fraxinus excelsior FE Broadleaf Deciduous 17 755 

Norway spruce Picea abies PA Conifer Evergreen 20 3,325 

Scots pine Pinus sylvestris PS Conifer Evergreen 7 111 

European larch Larix decidua LD Conifer Deciduous 24 1,240 

European silver fir Abies alba AA Conifer Evergreen 58 1,607 

Common rowan Sorbus aucuparia SA Broadleaf Deciduous 25 151 

Sallow Salix caprea SC Broadleaf Deciduous 7 115 

     Σ 301 Σ 16,808 

The number of reference pixels per species differs significantly. The main tree species Norway 
spruce and European beech are well represented. European silver fir, sycamore maple, European 
white birch and European larch show a high number of reference pixels as well. However, only a 
small number of reference spectra can be derived for European rowan, European aspen, sallow, 
Scots pine and Douglas fir, resulting from the small number of reference trees and sample plots, 
respectively. The different amounts of reference pixels have to be considered for the classification 
procedure. 

The mean reflectance of the 13 tree species is illustrated in Figure 5. Differences between the tree 
species can be seen in the red edge and the NIR region of the spectrum. The differences in the 
NIR wavelengths mainly result from brightness variations, i.e., differences in albedo, but also some 
shape differences can be seen. However, the mean spectrums of some tree species overlap, e.g. 
the spectrums of European silver fir and Douglas fir overlap almost exactly with no differences in 
brightness or shape. This small inter-class variability could lead to difficulties in discriminating the 
trees, requiring additional information to be included in the feature database. A clear distinction can 
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only be made between coniferous and deciduous trees. Coniferous trees generally have lower re-
flectance values in the NIR spectrum compared to deciduous trees, which is closely related to their 
needle structure and the higher absorption of coniferous needles compared to broadleaved spe-
cies (45). Furthermore, crown size and shape of coniferous trees influence the hemispherical-
directional reflectance factor (HDRF) and thus their reflectance as well (46). 

Selected bands 

The aforementioned band selection method resulted in 53 remaining bands, as illustrated in Figure 
6. The selected bands cover important vegetation features such as chlorophyll absorption in the 
blue (400-500 nm) and red (600-700 nm) region of the spectrum as well as a water absorption fea-
ture in the NIR at about 970 nm. Wavelengths representing leaf mass at about 740, 780 and 840 
nm are also included (47,48). 

 
Figure 6: Final selected 53 bands derived from the applied feature reduction methods. Mean spec-
tra of 13 tree species derived from the HySpex VNIR data plotted in the background. 

The advantages of hyperspectral data can still be maintained by using the final selected bands for 
tree species classification. This means that the ability to distinguish between subtle spectral differ-
ences especially in regions with high inter-class variability, e.g. the red edge, is still available. The 
final selected bands mostly coincide with bands used in previous tree species classification studies 
as performed by (7,6,36). The final selected bands were used for further analysis regarding classi-
fication and prediction of accuracy. 

Terrain features 

The distribution of the extracted features for all samples of the 13 tree species is displayed in Fig-
ure 7. The box-whisker plots show the range of pixel values and outliers as well as the variability 
within and among the tree species. As can be seen, elevation shows the highest potential for dis-
criminating between tree species with low within-species variance except for sycamore maple 
(AP), European beech (FS) and Norway spruce (PA). These three species are distributed over 
almost every elevation zone in the BFNP. Still, elevation shows strong median differences among 
species which may, however, result from the low variance within species. Regarding the range of 
tree heights in (b), there are distinguishable median differences among species which could en-
hance species classification. Aspect, displayed in (c), presents high intra-class variance for all tree 
species and only small differences regarding the median values. The median values of the hill 
shade parameter as illustrated in (d) have high values for European beech (FS) and sycamore 
maple (AP), whereas there is almost no difference among the other tree species. As can be seen 
in (e), slope shows almost no potential for the discrimination of tree species as the within variance 
is high for all species and also the median is almost on the same level for all species. 
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Figure 7: Box-whisker plots displaying the variability of the reference samples regarding elevation 
(a), tree height (b), aspect (c), hill shade (d), and slope (e). 

Tree species map – Adjustment of classification model 
To find the best combination of predictor data sets, the classification model was trained with several 
different predictor combinations, i.e., parameter combinations included in the feature database. The 
resulting models were compared using the overall accuracy derived from an error matrix based on 
the OOB data. Figure 8 shows the overall classification accuracies for the classification model using 
the different predictor combinations using the same training and validation samples for each model. 

Poor model results were achieved using only the 53 spectral bands (~77%). A remarkable increase 
in overall accuracy of more than 15% was obtained for the combinations which included the LiDAR 
parameters. As expected, the best results were achieved with the combination of all predictors 
(~94%). 
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Figure 8: Overall classification accuracies for the Random Forest classification of 13 tree species 
using four predictor data sets 

 
Figure 9: Image section of the classification result. 

The classification model was applied to the masked HySpex VNIR images to derive the occurrence 
of the 13 tree species within the forest area, using the raster package in R (49).To reduce the salt-
and-pepper appearance within the classified data, the majority filter was applied to the classifica-
tion map. The majority filter, which is a logical filter, uses a moving window (3x3) which passes 
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through the classified data set and determines the majority class within this window (50). Figure 9 
shows a part of the final classification result for the HySpex VNIR image stack from the northern 
part of the BFNP. Regarding the orthophoto, the darker, coarser appearing areas represent conif-
erous trees and the brighter, more homogeneous looking areas represent deciduous trees. Conif-
erous trees have different leaf cell structures and contain less chlorophyll than deciduous vegeta-
tion and therefore often appear coarser in an orthophoto. They appear darker, because they reflect 
less energy in the NIR band (46). Comparing the classification result with the orthophoto, it can be 
seen that the discrimination between coniferous and deciduous trees was successful. It can also 
be seen that European larch, appearing in the orthophoto as single light grey trees, was success-
fully identified in the classification for the most part. 

Validation and plausibility checks 
To compare actual tree species abundances with model outputs, overall classification accuracy 
and kappa statistics (51) derived from the confusion matrix were used. The confusion matrix in 
Table 4 summarizes the results for classifying 13 tree species using test data of six tree species.  

Table 4: Confusion matrix of classification based on test data from six tree species. 

 

It can be seen that some test pixels were classified as trees not involved in the test data set. Euro-
pean larch achieves the highest user’s accuracy with almost 98%, but it shows also the lowest 
producer’s accuracy of 59.08%. Confusions with Norway spruce and European silver fir and their 
strong similarity are the main reason for this moderate producer’s accuracy. The producer’s accu-
racies for European beech and Norway spruce are extremely high and account for over 97% each. 
The user’s accuracy of European beech is also very high and accounts for 96.54%. Though, Nor-
way spruce has the lowest user’s accuracy with 88.78%. The reason for this is, as already men-
tioned, the confusion between Norway spruce and European larch. European white birch has the 
lowest user’s accuracy of 84.14% mainly because of misclassification as European beech. The 
producer’s accuracy of European white birch amounts to 89.16%, which is mainly caused by con-
fusion with sycamore maple, European aspen and European silver fir. It can be assumed that the 
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reference pixels for European white birch accidentally contained pixels of European silver fir. An 
overall accuracy of 91.43% and a kappa coefficient of 0.8857 were achieved, indicating a strong 
agreement between the classified test pixels and the ground truth test data. 

The accuracy of the remaining seven tree species was estimated using the RF internal OOB error 
estimates (see Table 5). Producer’s as well as user’s accuracies are very high for all tree species. 
Only Scots pine and European rowan show moderate producer’s accuracies of about 72% each. 
With 81.82%, European rowan also has the lowest user’s accuracy due to confusion with syca-
more maple and European birch. The best predictions were achieved for European ash (96.31%) 
and sallow (96.04%). 

Table 5: Producer’s and user’s accuracy of the remaining seven tree species using the RF internal 
OOB error estimates. 

Species Prod. Acc. User’s Acc.
Aspen 91.06% 87.16% 
Douglas fir 90.38% 91.91% 
Alder 95.18% 95.33% 
Ash 96.82% 96.31% 
Pine 72.07% 88.89% 
Rowan 71.52% 81.82% 
Sallow 84.35% 96.04% 

Visual interpretation based on knowledge acquired during field studies reveals an over-
representation of Sycamore maple (AP), European ash (FS), European larch (LD), and European 
silver fir (AA) in the classification maps. This can also be seen in Figure 10 which shows the per-
centage of classified tree species derived from the classification maps. The labelled percentages 
show the percentage of tree species in the upper layer based on the forest inventory results of the 
entire BFNP area. An important consideration with respect to the classification results displayed in 
Figure 10 is that the classified maps only cover about 65% of the total national park area. 

 
Figure 10: Percentage of classified tree species compared to the results of the forest inventory. 
Labelled percentages show the forest inventory results of tree species in the upper layer. 
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Based on visual interpretation of the resulting maps, it can be seen that areas of the BFNP actually 
covered by Norway spruce or European beech show misclassification patterns in the maps caused 
by topographic features included in the classification model. This means that Norway spruce 
stands located in small valleys or lower elevations tend to be classified as tree species only occur-
ring in these lower elevation zones such as Scots pine, Douglas fir or European silver fir. The 
same behaviour can be observed for European beech stands located in lower elevations which are 
classified as European alder or European white birch. The classification maps are also influenced 
by remaining BRDF effects in the overlap areas of the flight lines which in turn influenced the cal-
culated vegetation index maps included in the classification. These effects cause sudden changes 
of homogeneous beech stands to tree species like European ash or sycamore maple, indicating a 
high similarity between these tree species. Such patterns are also visible in homogeneous Norway 
spruce stands which show abrupt changes to European larch or European silver fir. From a visual 
point of view, the tree species classification is strongly influenced by the relief of the BFNP. 

DISCUSSION AND CONCLUSIONS 
The aim of this study was to develop a multi-source approach for tree species classification 
adapted to the needs of the BFNP. The study focused on the suitability of tree species features 
derived from hyperspectral signatures and LiDAR data. For testing the potential of a multi-source 
classification approach in forest mapping, a reference data set from 13 tree species was created. 
The retrieved spectral, structural, and topographic features were analysed with the Random Forest 
classifier. The final analysis revealed successful discrimination of tree species with an overall accu-
racy of 94%. 

However, care must be taken when using elevation as one parameter for the classification. As 
mentioned before, misclassification patterns occurred in the final tree species maps based on the 
relief of the study area. Therefore, it is important that the training and test data set covers all possi-
ble terrain-specific variations of the occurring tree species. This means that reference data must 
consider spatial signatures and the training and test sites must - if possible - be evenly distributed 
over the whole study area. Due to the limited accessibility of big areas in the National Park, the in 
situ data collection for this analysis mainly focussed on the lower elevations of the southern part, 
i.e. the Rachel-Lusen region. This may have led to misclassification especially in the northern im-
age. A classification based on training data acquired in the southern part may not be able to repro-
duce the forest structure of the northern part of the BFNP, i.e. the Falkenstein-Rachel region, 
which is still strongly characterized by forest management in contrast to the Rachel-Lusen region 
(13). 

In general, predictive classification models trained with a small number of samples to a large com-
plex forest area, such as the BFNP, are error-prone, because the samples usually do not cover the 
spatial, spectral, structural and topographic variability of the forest. Due to the described heteroge-
neous stand structure it was quite difficult to find enough specimens especially of rare tree species 
such as Douglas fir and Scots pine. Adult full-grown specimens of pioneer tree species such as 
European white birch or European rowan with large crowns providing enough training pixels for 
model creation were rare. For this reason, an iterative expansion of field data is recommended to 
improve mapping of tree species. This means that ground based verification of the classified trees 
could be used to gather more suitable reference data to represent the full range of conditions pre-
sent at the BFNP. 

Random Forest proved to be useful for species discrimination based on a large feature database. 
Applying RF to a stratified randomly sampled training set led to very high model and classification 
accuracies. Confusion between European larch and Norway spruce indicates a strong similarity of 
these two species regarding spectral, structural, and topographic features. This confusion led to an 
over-representation of European larch in the classification maps. Lowest classification accuracies 
were found for European white birch, Scots pine and European rowan. It was difficult to find reli-
able reference samples for these tree species, as they usually do not occur in pure stands in the 
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BFNP. Therefore, some misclassifications may result from the low number of available reference 
data and possible errors in the reference data set resulting from potentially included background 
reflectance and mixed or shadowed pixels. A future step will be to examine the inclusion of a 
shadow mask in order to overcome the aforementioned problems. Also an object-based classifica-
tion using the tree crowns delineated from the LiDAR data could be an alternative approach. 

Regarding accuracy assessment, the OOB validation technique provided by RF must be used with 
caution. OOB validation performed on training data may be biased which usually leads to higher 
classification accuracies than a validation based on an independent test data set. Therefore, it is 
important to provide a large number of test pixels, which were unfortunately not available for this 
study. 

The evidence from this study is that the data sets used for the RF model produced reliable and 
accurate species distribution maps for 13 tree species in some parts of the BFNP, which will be 
valuable for assisting management. There are problems in the lower elevations of the national park 
caused by topographic features included in the classification model. These tree species distribution 
maps can then be implemented in future ecological studies conducted in the study area. However, 
it is important to consider the complexity of forest environments and their interactions with many 
ecological factors that need to be addressed for tree species mapping, including habitat types, 
plant communities, landforms, soil composition and disturbance history (52,53). Incorporating 
these factors into the classification model could result in more accurate maps which can help to 
understand the ecological processes and effects of environmental factors on species distribution 
and density (e.g. bark beetle impacts on Norway spruce). 

To improve tree species classification, additional information from the SWIR region of the spectrum 
could be used. Several vegetation biochemicals, such as lignin and cellulose, create absorption 
features across the SWIR region. By using data from the HySpex SWIR sensor, additional spectral 
bands are available and more vegetation indices can be calculated, which can provide better in-
formation about phenology, structure and biochemistry of the various tree species (54,31). 

Several studies also recommended multi-seasonal classification approaches using data acquired 
at different phenological stages (7,55,56). Considerable differences in spectral reflectance occur 
with the aging of leaves due to growth processes and changes in leaf pigments. Knowledge of the 
leaf ontogeny by species and season is helpful in image analysis, in order to highlight differences 
between tree species (53). The spectral data used in this study was acquired in July when pheno-
logical activity of tree species is usually low (57). This leads to very similar spectral responses from 
the different tree species. Multi-seasonal hyperspectral data may therefore enhance tree species 
classification results. 
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