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ABSTRACT 
Leaf area index (LAI) and above ground biomass dry matter (DM) are key variables for crop growth 
monitoring and yield estimation. High prediction accuracies of these parameters are a vital prereq-
uisite for sophisticated yield projections. The aim of the study was to examine the predictive ability 
of partial least squares regression (PLSR) for LAI and DM retrieval from hyperspectral (EnMAP), 
superspectral (Sentinel-2), and multispectral (Landsat 8, RapidEye) remote sensing data based on 
field reflectance measurements. Data was acquired from several crop types (wheat, rye, barley, 
rape, potato, sugar beet) during field campaigns in three different regions of Germany between the 
years 2011 and 2014. The field reflectance measurements were resampled to match the different 
spectral resolutions. Continuous reflectance and resampled data were transformed using five spec-
tral pre-processing techniques. Continuous data were used for comparison and served as best 
case scenario. The predictive ability of the PLSR models for LAI and DM was examined with re-
spect to the spectral resolution and the pre-processing techniques. To verify whether the composi-
tion of the data set had an effect on prediction quality, the entire data set (global) was divided in 
sub data sets (local) with respect to the region of acquisition, the year of acquisition and the crop 
type. Statistical models of the local data sets were compared with those based on the global data 
set. Generally, models were assessed with two validation strategies. 

R² of the global PLSR models based on continuous field reflectance measurements and independ-
ent validation varied from 0.74 to 0.79 (LAI), and from 0.76 to 0.87 (DM). Root mean square error 
ranged between 0.70 and 0.74 m2 m-2, and between 1.64 and 2.56 t ha-1, respectively. There was 
no pre-processing method which consistently improved model performance. However, results 
pointed out that the technique should be chosen with respect to the sensor and the parameter of 
interest. Models based on hyperspectral information performed generally best. Prediction error 
increased with the superspectral sensor configuration by only 3% for LAI, and 16% for DM. Multis-
pectral sensor configurations caused the prediction error to rise by up to 22% and 54%, respec-
tively. A stratification into local data sets according to date of acquisition, sampling region and crop 
type partially increased the prediction performance. Cross-validation yielded higher prediction er-
rors than independent validation in most cases. 
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INTRODUCTION 
Crop yield estimations are an important source of information for food security and the assessment 
of the agricultural market situation on a national and a global scale (1,2). Further, yield maps are 
an important component of site-specific farming to evaluate the effect of management strategies 
(e.g., 3,4,5,6), although multi-temporal analysis of yield maps alone did not prove successful for 
the delineation of management zones (7,8). Remote sensing systems can provide spatially and 
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spectrally differentiated information over large areas at regular intervals. Therefore, they may offer 
essential supplementary information to conventional yield statistics and to precision agriculture (9).  

The most simple and straightforward approach to estimate yield from remote sensing images is the 
direct correlation between vegetation indices and yield (e.g., 10), but numerous studies pointed out 
the shortcomings of this technique (e.g., 11,12). A more advanced methodology is the assimilation 
of biophysical key variables such as Leaf Area Index (LAI) and above ground biomass into crop 
growth models (e.g., 13,14,15). Both variables can be retrieved from remote sensing data (e.g., 
16,17,18) and it has been demonstrated that their assimilation into crop growth models can im-
prove yield estimations (e.g., 19). In any case, a high quality of the input variables is a vital prereq-
uisite for a sound yield monitoring and forecasting.  

In the majority of studies, LAI and above ground biomass have been derived from remote sensing 
data using parametric empirical relationships between in situ measurements of the mentioned pa-
rameters and vegetation indices (e.g., 17,20,21). The use of spectral vegetation indices, however, 
has limitations for high biomass and high LAI values, since vegetation indices reach a saturation 
level for LAI greater than 2 (22,23). This problem may be mitigated to a certain extent by using 
indices with more than three bands or by applying other curve fitting types (24). For LAI retrieval, 
Rivera et al. (24) stated that including bands in the shortwave infrared region eliminated the satura-
tion effect almost completely.  

Beyond that, the exploitation of the full-resolution spectra using non-parametric regression algo-
rithms has proven successful for the retrieval of biophysical variables, especially for hyperspectral 
systems. Non-parametric algorithms can be divided into linear (e.g., partial least squares regres-
sion (PLSR), principal component regression (PCR)) and nonlinear regression methods (e.g., sup-
port vector regression (SVR), random forest regression (RFR), neural networks (NNs), kernel ridge 
regression (KRR) and Gaussian processes regression (GPR), the latter also referred to as ma-
chine learning regression algorithms (MLRAs)) (25). PLSR became one of the most popular non-
parametric methods for biophysical parameter retrieval, not least due to its availability in various 
software packages, its ease of use and fast processing times (26,27). PLSR was successfully 
adopted in a variety of vegetation studies and outperformed not only index based parametric ap-
proaches. Hansen and Schjoerring (28), for example, showed that PLSR using the information 
from all wavelengths significantly improved predictions for biomass and leaf nitrogen compared to 
a simple regression with traditional broad-band and narrow-band indices. For LAI and other crop 
variables, PLSR was at least as good as deploying parametric approaches and narrow-band indi-
ces. Pimstein et al. (29) achieved lower errors for dry biomass, water and nitrogen content of 
wheat using PLSR instead of a parametric approach with vegetation indices. Darvishzadeh et al. 
(30) tested several statistical techniques for LAI estimation in heterogeneous grassland. They also 
stated that estimations further improved when PLSR was applied. Siegmann and Jarmer (31) 
compared the capability of PLSR with two nonlinear regression methods, SVR and RF, to estimate 
winter wheat LAI from hyperspectral data. They showed that PLSR obtained clearly better results 
than SVR or RF if independent validation was applied, and it performed less sensitive to the ap-
plied validation techniques. The predictive power of PLSR models, however, may vary depending 
on the pre-processing technique (32), whereas pre-processing is supposed to remove spectral 
noise, normalize systematic changes or perform scatter correction. Although designated to effi-
ciently handle highly correlated multiple spectral bands, PLSR may also gain comparable predic-
tion accuracies if confined to a few specific wavelengths regions (33).  

In recent years, and with the forthcoming of the European Sentinel-2 and Sentinel-3 mission, in-
creased attention has been paid to the second group of non-parametric regression algorithms that 
are referred to as machine learning regression algorithms (25,27,34). Verrelst et al. (25) demon-
strated that GPR is a powerful tool for vegetation parameter retrieval including LAI, outperforming 
other MLRAs (NN, SVR, KRR, GPR) in the majority of the test cases. According to Rivera Caicedo 
et al. (34), GPR and KRR proved most robust and were the best performing regression algorithms 
for LAI and leaf chlorophyll content. In their study, nonlinear regression algorithms (NN, KRR, 
GPR) generally excelled linear regression algorithms (PLSR, PCR) in terms of accuracy, bias, and 
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robustness. An urgent open question is how well these methods perform with large data sets (34). 
Verrelst et al. (27) also confirmed that MLRAs from the kernel family achieved a higher accuracy 
than parametric and linear non-parametric regression methods such as PLSR and PCR, whilst the 
latter were invincible in terms of processing speed. The authors further tested a physical approach 
relying on a lookup-table (LUT)-based inversion of a canopy radiative transfer model (RTM). Pre-
diction accuracy of RTMs was similar to two-band indices and is in agreement with findings by 
Darvishzadeh et al. (30). Owing to their physical nature, RTMs are more generally applicable, and 
constitute an alternative strategy for biophysical parameter retrieval (e.g., 35,36). But the inversion 
of a canopy RTM is a complex task, because it is mostly under-determined (37) and ill-posed (38). 
Numerous strategies have been proposed to address the ill-posed problem including iterative nu-
merical optimization, look-up tables (LUT), or hybrid approaches. LUT-based inversion routines are 
widely applied using various regularization strategies to improve the robustness of the LUT-based 
inversion, for example the use of a priori information, modified cost functions, or spatial or temporal 
constraints. A comprehensive overview of existing procedures is given in Verrelst et al. (27). The 
selection of the regularization method but also the choice of the RTM model and the applied inver-
sion procedure strongly influence the performance and the partially expensive computational effort 
of this strategy of information retrieval (26,38). 

In our study, we aimed at evaluating the performance of PLSR based on field reflectance meas-
urements and in situ observations to predict LAI and above ground biomass from remote sensing 
data. Unlike a multiplicity of studies (e.g., 20,21,27,34,39), our research is based on field meas-
urements from three different geographic regions and six crop cultivars acquired at various dates 
during the growing seasons in four years. Data from different regions, acquisition dates and crop 
types were used to ensure the applicability of the empirical approach on a regional scale. The 
analysis was executed in preparation of image based retrieval of LAI and biomass for yield estima-
tions by means of linking remote sensing data and crop growth modelling.  

Therefore, we firstly (i) tested the influence of pre-processing methods appropriate for data nor-
malization and removal of systematic errors. Further, we aimed at identifying the best suited earth 
observation mission for our approach, including hyperspectral (EnMAP), superspectral (Sentinel-
2), and multispectral (Landsat 8, RapidEye) systems. Hence, we secondly (ii) assessed the predic-
tive power of the PLSR models when wavelength information was adjusted to five spectral sensor 
configurations. Thirdly (iii), we addressed potential effects on model prediction accuracy due to the 
heterogeneous composition of the data set. For this reason, the data set was divided in sub-groups 
and model performance was analysed with respect to the crop type, the year of acquisition and the 
region of acquisition. Analyses for items (i) and (ii) were performed on continuous and on resam-
pled data whereby results based on continuous data served as best case scenarios. Effects due to 
database composition were explored with the continuous reflectance measurements only. 

METHODS 
Field reflectance measurements and sampling 
The data set consists of 364 reflectance measurements of winter wheat, winter rye, winter barley, 
winter rape, sugar beet and potato which were acquired during 16 field operations between March 
and July in the years 2011 to 2014. Details on sampling dates and number of measurements are 
given in Table 1. The data was sampled in three different regions in Germany (Figure 1). Sampling 
was carried out on agricultural fields near the city of Köthen (R1) in the federal state of Saxony-
Anhalt during three field campaigns. In Braunschweig (R2), Lower-Saxony, samples were acquired 
on test sites of the Julius Kühn-Institut. Near Baruth (R3), a city in the federal state of Branden-
burg, sampling took place on a breeding nursery. On the experimental plots in Braunschweig and 
Baruth, different fertilisation treatments and irrigation schemes were applied. Partially, different 
genotypes were cultivated.  

Canopy reflectance was recorded from 0.25 m² plots with field spectrometers (ASD Fieldspec Pro, 
SVC HR1024), covering a spectral range from 350 nm to 2500 nm. All reflectance curves were 
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resampled to 1 nm and smoothed using a Savitzky Golay filter (40) with a filter size of 32 and a 
smoothing polynomial of 4. Settings are based on experiences of a previous study (Gerighausen, 
unpublished). Afterwards, pre-processing transformations were applied if applicable (cp. statistical 
analysis). Due to atmospheric absorption from 1355 nm to 1425 nm and from 1785 nm to 1995 nm, 
noisy bands were removed. 

Exactly at the location of the canopy reflectance measurements of each plot, LAI was measured 
either with the LAI-2000 plant canopy analyser (LI-COR, Inc.) or the Sunscan Canopy Analysis 
System SS1-Com-R4 (Delta-T Devices, Ltd). The amount of dry matter (DM) was determined for 
each sample plot by destructive techniques. Above ground biomass was cut and weighed after 
oven-drying at 60 °C for at least 24 h. 

Table 1: Dates of sampling operations and number of measurements in the years 2011 to 2014.  

Crop type Sampling date with number of measurements 
in brackets (LAI/DM) 

Sampling 
year 

Sampling  
locations 

wheat 8th May (57/57) 
24th(67/67), 25th May (8/8) 

25th April (10/10), 9th July (14/14) 
4th June (3/3) 

2011 
2012 
2013 
2014 

R1 
R1 
R2 
R2 

rye 14th May (5/5),  
24th April (15/15), 28th May (16/-), 5th (15/15), 
6th (32/-), 19th June (15/15), 9th July (15/15) 

15th May (38/-) 
4th June (3/3) 

2012 
2013 

 
2013 
2014 

R2 
R2 

 
R3 
R2 

barley 4th June (3/3) 2014 R2 
rape 13th March (20/20), 6th July (6/6) 2014 R2 
potato, sugar beet 6th June (10/10), 4th July (12/12) 2014 R2 

 
Figure 1: Location of the study areas in Germany. 
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Statistical analyses 
The quantitative relationships between canopy reflectance and crop parameters were established 
by means of PLSR. Statistical models were set up for LAI and DM, respectively, for global and lo-
cal data sets as described below. The analyses were performed with The Unscrambler® (CAMO 
Software AS) applying the PLSR according to Martens and Naes (41). PLSR is a bilinear multi-
variate modelling approach that projects information of the predictor (X) and the response (Y) vari-
ables onto a few so-called latent variables or factors. This way, the problem of variable selection is 
reduced. A detailed description of the PLSR algorithm is given by Wold et al. (42). 

Model validation was performed by applying two different techniques. First, an independent valida-
tion (ival) was conducted by splitting the data into a calibration and a validation data set by sys-
tematic sampling. The data set was sorted according to LAI and DM, respectively, and every 2nd 
sample was chosen for calibration purposes. The rest was retained for validation only. This proce-
dure was chosen to ensure that the validation data set is within the data range of the generated 
model. Independent validation can be considered the most reliable method to assess model accu-
racy, as samples are not involved in model calibration. However, model accuracy may be overes-
timated if samples are not entirely independent due to spatial autocorrelation. This problem is 
largely reduced in the data set due to a multiplicity of individual trial plots (232 out of 364) with dif-
ferent genotypes and treatments. Beyond that, model accuracy may be affected by the way the 
data sets are divided. In order to discover such undesirable effects, a random procedure using 
leave-one-out cross-validation (cv) was additionally performed on all data sets for comparison. If 
less than 30 samples were available due to thematic sub-grouping, a cross-validation was per-
formed only. The maximum number of PLSR factors was set to 10. The optimal number of latent 
variables was determined by leave-one-out cross-validation and the model providing the lowest 
root mean square error (RMSE) was chosen. In order to find out if the validation strategy affects 
model performance, a two-tailed t-test of the paired sample residuals was carried out with a signifi-
cance level of 0.05. 

Statistical models were set up for several calibration/validation combinations to analyse the effects 
of the pre-processing transformation procedures (i), the spectral configuration (ii), and the compo-
sition of the data set (iii) on model performance. For items (i) and (ii), a “global” calibra-
tion/validation set containing all samples was created. Analyses for both items were performed on 
continuous and on resampled data whereby the continuous data served as best case scenario. For 
item (i), the following pre-processing techniques were applied to the global data set one by one: 
absorbance (log(1/R); ABS), unit vector normalisation (UVN), standard normal variate transforma-
tion (SNV), mean normalisation (MN) (43), and first derivative (Deriv1) according to Savitzky & 
Golay (40). For item (ii), the data was resampled to match the configuration of five sensor systems 
including EnMAP, Sentinel-2, RapidEye and Landsat 8 OLI (later referred to as Landsat 8), and 
additionally a ground based hyperspectral system akin the PentaSpek system (44).These sensors 
were selected for three main reasons: first, to assess the effect of narrowband hyperspectral, su-
perspectral and broad-band multispectral information on the prediction accuracy; second, to exam-
ine potential implications of the spectral range, and finally, to verify the potential of the approach for 
existing but also for missions that have been launched recently or will be launched in the foresee-
able future.  

Table 2 gives an overview of the characteristics of the sensors. Details on the spectral bands for 
EnMAP and Sentinel-2 are based on simulated data sets which have been used for spectral re-
sampling in this study. Band specifications may therefore slightly differ from the literature. Spectral 
resampling was accomplished using a Gaussian model with a FWHM equal to the band spacings 
(45). To verify whether the composition of the data base has an impact on the model accuracy (iii), 
a global calibration/validation set using the entire spectral database with continuous reflectance 
measurements was set up again. Subsequently, the entire data set was grouped into sub data sets 
with respect to the region of acquisition, the year of acquisition and the crop type. These sub data 
sets served as the basis for “local” calibration/validation sets. Descriptive statistics of the global 
and local data sets are summarized in Table 3. 
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The performance of the PLSR models was evaluated by the RMSE and the coefficient of determi-
nation (R²). Further, prediction accuracy between models with a different data base was compared 
using the ratio of performance to deviation (RPD) after Chang et al. (46). They suggested three 
model categories: models with RPD > 2 (category A) which accurately predict parameters, models 
with RPD < 1.4 (category C) which have no prediction ability, and models with RPD between 1.4 
and 2.0 which represent an intermediate class (category B). In addition, the ratio of performance of 
inter-quartile distance (RPIQ) after Bellon-Maurel et al. (47) was used. RPIQ is supposed to better 
account for the spread of populations than the widely used RPD, but there is no classification 
scheme for assessing the model quality using the RPIQ yet. 

RESULTS AND DISCUSSION 
Descriptive statistics 
LAI varied from 0.06 to 6.22 m2 m-2 for the entire data set (global) comprising 364 samples. The 
mean value was 2.68 m2 m-2. Data range and mean of the local data sets differed in some cases 
markedly depending on the region of acquisition, the year of acquisition and the crop type (Table 
3). The total number of rape and root crops (sugar beet, potato) samples was relatively low. The 
data showed a slight positive skew except for rye. The amount of above-ground dry matter (DM) 
was determined for 76 % of the sampled plots. It ranged between 0.23 and 20.68 t ha-1 with a 
mean value of 6.60 t ha-1. DM showed a bimodal distribution, because data could not yet be ac-
quired sufficiently during all growing stages. In particular, little data is available in the period of 
booting to the beginning of florescence emergence (cereals and rape) and during tuber and beet 
root formation (potato, sugar beet). Similar to the LAI, local data sets partly exhibited distinct differ-
ences in data range and mean values. Some of the local data sets showed a positive skew (R2, 
Year 2014, rape). By contrast, the local data set based on samples taken in 2012 had a negative 
skew. It should be noted at this point that PLSR has the advantage of not being subject to assump-
tions about the data distribution, samples size or scale (48).  

Table 2: Sensor characteristics of the five systems tested using spectral resampling.  

 EnMAP (49) PentaSpek (34)  Sentinel-2 (50) 
 

RapidEye (51) 
 

Landsat 8 (52) 
 

Spectral  
range (nm) 

420-2450 200-1100 
(effectively 400-925) 

443-2190 440-850 430-2290 

No. bands 242 551 13 5 7 
Spectral  
bands1,2 
(nm) 

420-1000 (6.5) 
900-2450 (10) 

400-925 (1) 442 (20) 
492 (65) 
559 (35) 

662.5 (30) 
702 (15) 

744.5 (15) 
782 (20) 
842 (115) 
867 (20) 
942 (20) 
1369 (30) 
1607 (90) 

2189.5 (180) 

440-510 
520-590 
630-685 
690-730 
760-850 

430-450 
450-510 
530-590 
640-670 
850-880 

1570-1650 
2110-2290 

 

GSD3  
(nadir) (m) 30 0.15×0.82** 10 to 60 6.5 30 

1 for EnMAP, numbers in brackets indicate spectral sampling distance, 2 for PentaSpek and Sentinel-2, numbers in 
brackets indicate band width. 3 Ground Sampling Distance 
** @ 0.5 km/h and a 45° viewing angle and one metre distance between sensor and object  
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Effect of pre-processing transformations 
The results on the effect of different pre-processing transformations as applied to the field spec-
trometer data with 1 nm spectral resolution are shown in Table 4 and Table 5. Compared to no 
transformation, the LAI models based on independent validation showed a marginal increase of the 
coefficient of determination (R²ival) when SNV and first derivative were applied. RMSEival decreased 
only in the case of first derivative transformation. All other pre-processing techniques had either a 
negligible effect on model performance or even decreased it. By contrast, cross-validated LAI 
models improved slightly when ABS, UVN and MN were applied. Except for two cases, 
cross-validation resulted in lower R² and higher RMSE than independent validation (Table 4). Re-
sults indicate that none of the tested pre-processing methods generally performs best. DM models 
were positively influenced by SNV no matter which validation procedures was adopted. RMSEival 
was reduced by almost 10% compared to the raw reflectance spectra. Irrespective of the validation 
procedure, model performance also benefits if UVN or first derivative were applied.  

By contrast, a conversion of reflectance to absorbance clearly decreased the predictive power of 
the models (Table 5). As reported for LAI, R² of the cross-validated DM models was lower and 
RMSE was higher in comparison to the independently validated models. The positive influence of 
the first derivative transformation as observed for the LAI and the DM models was also found by 
Pimstein et al. (29) when deriving dry biomass, water content, and nitrogen content. By evaluating 
the prediction accuracy for feed quality constituents in pasture, Thulin et al. (32) also stated that 
their best models were dominated by the first derivative. The t-test p values of the LAI models were 
all above 0.05, indicating that there is no significant difference between the models based on inde-
pendent or cross-validation. However, for DM, t-test p values point out significant differences of 
coupled model residuals in four cases.  

Table 3: Descriptive statistics of the model reference data base for the entire data set (global) and 
sub data sets (local) according to region of acquisition (R1: Köthen, R2: Braunschweig, R3: Ba-
ruth), year of acquisition (e.g., Y11: 2011) and crop type. The sub data set grain comprises wheat, 
rye and barley. The sub data set “root” combines sugar beet and potato. LAI in m2 m-2, DM in t ha-1. 

LAI 
 All Region Year Crop 
 global R1 R2 R3 Y11 Y12 Y13 Y14 wheat rye grain rape root 
No.  364 132 194 38 57 80 170 57 159 154 316 26 22 
Mean 2.68 2.88 2.35 3.67 1.65 3.75 2.71 2.09 2.65 2.92 2.78 1.88 2.08 
Min 0.06 0.5 0.06 2.63 0.50 1.11 0.06 0.30 0.13 0.06 0.06 0.30 0.46 
Max 6.22 5.95 6.22 5.22 3.32 5.95 6.22 5.01 5.95 6.22 6.22 4.52 5.01 
SD 1.46 1.33 1.54 0.66 0.63 0.90 1.59 1.23 1.40 1.52 1.46 1.06 1.42 

Dry matter 
 All Region Year Crop 

 global R1 R2 R3 Y11 Y12 Y13 Y14 wheat rye grain rape root 
No.  278 132 146 - 57 80 84 57 159 68 230 26 22 
Mean 6.60 7.59 5.71 - 3.53 10.38 5.97 5.28 7.56 5.80 7.11 5.65 2.44 
Min 0.23 1.79 0.22 - 1.79 2.87 0.22 0.39 0.36 0.22 0.22 1.08 0.39 
Max 20.68 13.77 20.68 - 6.17 13.77 18.02 20.68 18.02 15.31 18.02 20.68 5.52 
SD 4.58 3.91 4.95 - 0.94 2.27 4.86 5.31 4.41 3.85 4.35 6.24 1.37 

Working with spectra adjusted to the spectral configuration of hyper-, super- and multispectral sen-
sors, as in the following section, revealed that there is obviously no “all-purpose” transformation. The 
performance and efficiency of the pre-processing transformation technique varied with the spectral 
configuration of the sensor system (results not shown). Several transformation techniques achieved 
similar results. This was the case for the LAI models based on PentaSpek-like reflectance values 
when SNV, MN and ABS were applied. Further, prediction accuracy was similar for the DM models 
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developed with Sentinel-2-like reflectance spectra and SNV, Deriv1 or MN. Based on EnMAP-like 
spectra, best results were achieved using UNV or SNV for LAI and DM, respectively. For Landsat 8-
like spectra, UVN was the best choice for LAI, but for DM no pre-processing yielded the lowest error 
values. If spectra were adjusted to RapidEye spectral configuration, transformation to absorbance or 
UVN yielded best results for LAI and DM, respectively. Since first derivative transformation is inap-
propriate for multispectral sensors, it was not used for the latter two. As result of the investigations, 
the analysis in the next section was done using the best pre-processing transformation (cp. Table 6). 
Beyond that, findings gained for spectra with 1 nm resolution based on global data sets could not be 
transferred to the local data sets (results not shown). For the purpose of comparison, these models 
have been set up with a single pre-processing method that is UVN for LAI, and SNV for DM (cp. 
Table 7, Table 8). These techniques were selected as they performed best in many cases.   

Table 4: Prediction accuracy of the LAI models with respect to different pre-processing techniques. 
none: no transformation, ABS: absorbance, UVN: unit vector normalisation, SNV: standard normal 
variate, MN: mean normalisation, Deriv1: first derivation. 

Technique No. LVival R²ival RMSEival 
(m2 m-2) 

No. LVcv R²cv RMSEcv 
(m2 m-2) 

t-test 
p value 

none 7 0.76 0.71 5 0.72 0.77 0.78 
ABS 6 0.76 0.71 6 0.75 0.73 0.24 
UVN 3 0.75 0.73 4 0.75 0.73 0.98 
SNV 4 0.79 0.72 3 0.73 0.75 0.39 
MN  2 0.74 0.74 4 0.75 0.73 0.49 
Deriv1 6 0.77 0.70 3 0.71 0.79 0.38 

Table 5: Prediction accuracy of the DM models with respect to different pre-processing techniques. 
none: no transformation, ABS: absorbance, UVN: unit vector normalisation, SNV: standard normal 
variate, MN: mean normalisation, Deriv1: first derivation. 

Technique No. LVival R²ival RMSEival 

(t ha-1) 
No. LVcv R²cv RMSEcv 

(m2 m-2) 
t-test  

p value 
none 6 0.85 1.81 6 0.83 1.88 0.02 
ABS 7 0.76 2.56 7 0.77 2.21 0.36 
UVN 6 0.86 1.73 5 0.84 1.86 0.01 
SNV 7 0.87 1.64 6 0.85 1.80 0.14 
MN 5 0.85 1.80 5 0.83 1.88 0.00 
Deriv1 6 0.85 1.76 6 0.84 1.86 0.04 

Effect of spectral configuration 
Results on the effect of spectral configuration on model performance based on independent valida-
tion are displayed in Figure 2 and Figure 3. Results of the cross-validated LAI and DM models are 
depicted in Figure 4 and Figure 5. Results indicate that resampling reflectance spectra to the spec-
tral configuration of the EnMAP hyperspectral instrument or the Sentinel-2 superspectral instru-
ment did not negatively affect the prediction accuracy of the LAI models. In fact, data reduction 
partly increased model prediction performance. Accordingly, scatter plots of measured versus pre-
dicted values of the EnMAP, PentaSpek and Sentinel-2 model show a little less variation along the 
1:1 line than the SVC model disregarding the few outliers in all models (Figure 2, Figure 4). This 
result is in agreement with Herrmann et al. (55) who reported that continuous data did not provide 
any significant advantage over VENµS and Sentinel-2 data in LAI assessment. Results for the 
PentaSpek system are inconsistent for the two applied validation strategies. While cross-validation 
leads to an increase in prediction performance just as observed for EnMAP and Sentinel-2 like spec-
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tra, independent validation causes a decrease. If spectra were adjusted to multispectral instruments, 
i.e. RapidEye and Landsat 8, prediction accuracy decreased as expected due to the strongly re-
duced spectral information. R²ival dropped to 0.66 and 0.65, RMSEival increased to 0.85 and 0.86, 
respectively (Figure 2). Cross-validated models reflected the same trend, but prediction accuracy 
was even lower than with independent validation (Figure 4). For Landsat 8, scatter plots show that 
samples with LAI less than 3 are increasingly overestimated. At the same time, the underestimation 
of LAI values greater than 5, which is present in all scatter plots, is augmented. For RapidEye, varia-
tion along the 1:1 line is generally amplified. All t-test p values were higher 0.05 indicating that cou-
pled model residuals are the same except for the LAI model based on RapidEye (Table 6).  

Table 6: Pre-processing techniques and t-test p values of the LAI and DM models for different 
spectral configuration. 

Parameter LAI DM 
System PP t-test p value PP t-test p value 
SVC Deriv1 0.85 SNV 0.14 
EnMAP UVN 0.73 SNV 0.89 
PentaSpek SNV 0.61 SNV 0.05 
RapidEye ABS 0.00 UVN 0.00 
Landsat 8 UVN 0.95 none 0.00 
Sentinel-2 ABS 0.23 SNV 0.00 

Comparable to LAI, the DM prediction models developed with spectra resampled to EnMAP band 
configuration showed an accuracy similar to that of models based on field reflectance. If spectra 
were transformed to match the PentaSpek and Sentinel-2 band configurations, model prediction 
accuracy slightly decreased but results were still promising. Adjusting spectra to RapidEye and 
Landsat 8 band configuration led to considerably lower prediction accuracies. R² was particularly 
low for RapidEye, and RMSE was correspondingly high regardless of the validation scheme 
(Figure 3, Figure 5). Generally, cross-validated models showed slightly higher prediction errors as 
observed before. Scatter plots of measured versus predicted values exhibited a large variation 
along the 1:1 line for the Landsat 8 and RapidEye models. Smaller DM values are generally over-
estimated, while DM is underestimated for higher values (Figure 3, Figure 5). T-test p values disclose 
significant differences between ival- and cv-models based on super- and multispectral data (Table 6). 

The predictive ability of the LAI model based on data resampled to the PentaSpek system featuring 
a limited spectral range (cp. Table 2) was only slightly lower than the model based on field spec-
trometer data (SVC). For DM, the RMSE increased by about 20% but was in the range of the pre-
diction error of the Sentinel-2 model. This may be regarded as a hint that it was not the data range 
(extended to the SWIR), but the spectral resolution, that was crucial for successful parameter pre-
dictions. The poor performance of the RapidEye and Landsat 8 model strengthen that assumption. 
However, Verrelst et al. (25) reported high prediction accuracies also for a set-up with the four 
Sentinel-2 MSI bands of 10 m spatial resolution and spectral bands between 490-665 nm and 842 
nm which very much resemble four of five Rapid Eye bands. Thus, further research is needed to 
shed light on that issue. Improvements of the prediction accuracy using hyper- and superspectral 
sensors compared to multispectral systems are in conformity with previous studies. Twele et al. 
(17) reported higher prediction accuracy for EO-1 Hyperion than for Landsat Enhanced Thematic 
Mapper (ETM+). Pu et al. (53) achieved the best results with EO-1 Hyperion followed by EO-1 ALI 
and ETM+. The high potential of the Sentinel-2 mission for the retrieval of biophysical variables 
was also pointed out by Richter et al. (36) and Frampton et al. (54). Our results show that the 
spectral configuration of Sentinel-2 seems as appropriate as that of hyperspectral systems using 
PLSR especially for LAI retrieval. Taking the frequent revisit time of Sentinel-2 and its higher spa-
tial configuration compared to EnMAP or Landsat 8 into account, this sensor will be ideal for use in 
vegetation and yield monitoring as stated previously (e.g., 36,54). 
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Figure 2: Plots of measured versus predicted values for LAI (m2 m-2) based on independent vali-
dated models with different spectral configurations. For spectral pre-processing see Table 6. 

 
Figure 3: Plots of measured versus predicted values for DM (t ha-1) based on independently vali-
dated models with different spectral configurations. For spectral pre-processing see Table 6. 
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Figure 4: Plots of measured versus predicted values for LAI (m2 m-2) based on cross-validated 
models with different spectral configurations. For spectral pre-processing see Table 6. 

 
Figure 5: Plots of measured versus predicted values for DM (t ha-1) based on cross-validated mod-
els with different spectral configurations. For spectral pre-processing see Table 6. 
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Effect of data base composition 
Subsetting the data into local data sets did not necessarily result in an improvement of model accu-
racy. Further, the behaviour of the local models was inconsistent for LAI (Table 7) and DM (Table 
8). For LAI, local models according to the region of acquisition improved compared to the global 
model for two regions (R1, R2). The plots of measured versus predicted LAI values visualise these 
results by noticeably less scattering, especially in the R1 model (Figure 6a,b). Prediction accuracy 
decreased for the Baruth test site (R3). Grouping the data set according to the year of acquisition 
was of little benefit except for the year 2011, and most notably for the year 2013. RPDival/cv values 
above 2 indicated category A models with a high predictive accuracy. RPIQival/cv of the 2013 model 
was almost twice as high as for the global model. The RPIQival/cv for the 2011 model dropped, how-
ever, compared to the global model as a consequence of the much smaller data range and a large 
number of samples with LAI values below 2 (Table 3). This becomes clearly obvious in the scatter 
plot (Figure 6c,d). If the samples were divided with respect to the crop type, prediction ability in-
creased considerably for wheat and rye (Table 7, Figure 6e,f). A positive effect was achieved even 
with a combined model for all grain crops. These models belong to category A, which was con-
firmed by elevated RPIQival/cv values. The local models for rape and root crops have only poor pre-
dictive ability with an RPDcv less than 1.35 (category C) (Table 7). Despite the improved prediction 
accuracy of selected local models, the trend to underestimate LAI values greater than 5 persisted. 
Further, the cross-validated model for rye cannot appropriately account for LAI values near 3 
(Figure 6). This was not observed when independent validation was performed with samples with-
held from calibration. Correspondingly, the t-test p value of the models for rye is 0.01, pointing out 
that there is a difference between them. T-test p values of the coupled residuals of the R2, R3 and 
the 2013 model were also lower than 0.05. In that case, differences between cross-validation and 
independent validation were not apparent in the scatter plots (not shown). 

Table 7 Prediction accuracy of the LAI models with respect to data base composition (thematic 
groups). The pre-processing technique was UVN. R1: Köthen, R2: Braunschweig, R3: Baruth. ival: 
independent validation, cv: cross-validation 

 No. 
LVival 

R²ival RMSEival 

(t ha-1) 
RPDival RPIQival No. 

LVcv 
R²cv RMSEcv

(m2 m-2)
RPDcv RPIQcv t-test 

p value
 Global 
All 3 0.75 0.73 1.82 2.82 4 0.75 0.73 2.00 2.96 0.95 
 Local: Region 
R1 6 0.79 0.61 2.20 3.72 3 0.82 0.58 2.32 3.96 0.94 
R2 7 0.77 0.73 2.12 3.58 6 0.76 0.76 2.03 3.46 0.00 
R3 3 0.40 0.65 1.06 1.75 4 0.60 0.42 1.56 2.72 0.00 
 Local: Year 
2011 5 0.75 0.30 2.02 2.15 3 0.68 0.30 2.08 2.22 0.48 
2012 3 0.36 0.69 1.27 1.51 2 0.41 0.70 1.30 1.55 0.17 
2013 3 0.87 0.57 2.80 5.28 3 0.87 0.57 2.78 5.33 0.00 
2014 4 0.52 0.81 1.47 1.97 3 0.37 0.98 1.25 1.70 0.46 
 Local: Crop type 
wheat 4 0.85 0.54 2.58 3.95 4 0.85 0.55 2.56 3.91 0.37 
rye 6 0.84 0.60 2.55 4.57 2 0.81 0.67 2.26 4.12 0.01 
grain 3 0.76 0.71 2.06 3.54 3 0.80 0.66 2.21 3.81 0.91 
rape - - - - - 1 0.20 0.96 1.10 1.69 - 
root - - - - - 7 0.47 1.05 1.35 2.08 - 

For DM, no clear trend was observable for the local models with respect to the region of acquisi-
tion. On the one hand, R²ival/cv and RPDival/cv decreased except for the R2 model based on inde-
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pendent validation. On the other hand, RPIQival/cv increased for the R1 models but decreased for 
the R2 models due to the differences in the underlying data distribution. Splitting up the samples 
according to the year of acquisition leads to a substantial increase in prediction accuracy, if only 
data from 2013 were included. This is in agreement with the findings reported for LAI. However, 
this time, poor results were obtained for the data from 2011. Instead, RPDival/cv of the 2014 model 
was about as high as that of the global model. The limited RPIQival/cv values of the model can be 
explained by the high frequency of samples with little dry matter. Yet, the scatter along the 1:1 line 
is relatively homogenous with a minor trend to underestimate higher values (Figure 7a,b). Crop 
type-specific DM models (except for root crops) belong to category A (RPD > 2) just as the global 
model. The partitioning of the samples by crop type, however, provided contradicting results for the 
two applied validation strategies. In contrast to the independently validated models, performance 
increased if cross-validation was applied. These differences correspond with t-test p values of 
0.0007 and 0.02 for wheat and grain model pairs. Setting up a separate model for rape improved 
the prediction performance, but only a few samples of high biomass fit the regression line at this 
stage and RPIQcv is low (Figure 7c). More samples need to be acquired for evidence. The root 
model showed poor results just as observed for LAI.  

 
Figure 6: Selected plots of measured versus predicted values for local LAI models based on cross-
validation. 

The precision obtained for LAI and DM with global and local PLSR models in our study is within the 
precision obtained by previous authors (e.g., 29,55). Results confirmed that obviously neither the 
region of acquisition nor the year of acquisition or the crop type alone determine model perform-
ance, as the separation of the global data set into local data sets had both positive and negative 
effects in each of the three thematic groups for LAI and for DM. Rather, it seems, that the data 
range and the variation related to the dates and the frequency of sampling, have an additional im-
pact on model performance. In most cases, prediction accuracy of the local models improved, if the 
local data sets possessed a similar data range and variation as the global model. For LAI, this ap-
plies to the R1, R2, 2013, wheat, rye and grain model. For DM, this is applicable to the 2013, 2014, 
wheat, and grain models as well as to the model for winter rape (cf. Table 3, Table 7, Table 8). 
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However, the prediction accuracy of the LAI model based on data from 2011 increased despite a 
much smaller data range and little variation. In fact, the 2011 data set originates from a one-day 
field campaign in one crop type just like the data set of the R3 model. However, the latter showed a 
considerable decline in model performance due to a general overestimation of LAI values. Further, 
the DM model for region 2 (R2) was not better than the global model, although data range and var-
iation were equivalent to the global data set. An explanation for that behaviour has not been found 
so far. The generally poor results for root crops may be attributed to the following aspects. First, 
the cultivation of sugar beet and potatoes in rows make correct LAI measurements of 0.25 m² plots 
more difficult than in relatively homogeneous canopies of grain crops or rape. Second, diurnal vari-
ations of the canopy structure, especially on very hot days, may influence measurements. Beyond 
that, data on sugar beet and potato is hitherto only available from two dates during the growing 
season (cp. Table 1). More samples covering the entire growing season are needed to gain a fur-
ther insight into the performance of the models. 

Table 8: Prediction accuracy of the DM models with respect to data base composition (thematic 
groups). The pre-processing technique was SNV. R1: Köthen, R2: Braunschweig, R3: Baruth. cv: 
cross-validation 

 No. 
LVival 

R²ival RMSEival 

(t ha-1) 
RPDival RPIQival No. 

LVcv 
R²cv RMSEcv 

(t ha-1) 
RPDcv RPIQcv t-test 

p value
 Global 
All 7 0.87 1.64 2.82 4.63 6 0.85 1.80 2.54 4.21 0.13 
 Local: Region 
R1 2 0.85 1.50 2.62 5.00 4 0.84 1.55 2.52 4.87 0.25 
R2 7 0.88 1.74 2.89 3.95 5 0.83 2.02 2.45 3.35 0.91 
R3 - - - - - - - - - - - 
 Local: Year 
2011 1 0.52 0.61 1.46 1.82 2 0.44 0.71 1.33 1.66 0.35 
2012 2 0.41 1.64 1.31 1.72 3 0.36 1.83 1.24 1.54 0.85 
2013 4 0.92 1.37 3.61 6.55 4 0.90 1.57 3.08 5.66 0.00 
2014 6 0.88 1.74 2.94 2.29 7 0.84 2.12 2.50 1.88 0.02 
 Local: Crop type 
wheat 7 0.86 1.62 2.70 4.82 6 0.85 1.71 2.58 4.59 0.00 
rye 3 0.80 1.75 2.26 3.15 5 0.86 1.43 2.69 3.81 0.25 
grain 6 0.86 1.64 2.67 4.50 6 0.86 1.65 2.63 4.47 0.02 
rape - - - - - 4 0.88 2.16 2.89 0.99 - 
root - - - - - 2 0.41 1.08 1.27 1.66 - 

 
Figure 7: Selected plots of measured versus predicted values for local DM models based on cross-
validation. 
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Plotting the X-scores of the PLSR model can be used to identify object similarities and dissimilari-
ties (42). The X1-X2 and X2-X4 score plots of the global LAI model (Figure 8) displayed a distinct 
separation of the rape and root crop samples, in particular potato. A separation of samples is also 
evident in the lower half of the scatter plots of the global LAI models (Figure 2, Figure 4) and corre-
sponds to the potato samples. This may be seen as an indication that the crop type affects the 
model performance, and consequently, individual crop models should be set up to estimate the 
LAI. A similar conclusion based on a study of wheat and potato was drawn by Herrmann et al. (55) 
who analysed the suitability of PLSR and vegetation indices for LAI estimation. By contrast, Kross 
et al. (20) reported the opposite. They showed that indices were insensitive to crop types with dif-
ferent canopy and leaf structure (corn and soybean) which would be a large benefit with regard to 
operability. For the DM model, X-score plots did not show distinct crop groups. This is also re-
flected by lower deviations between R² and RPD of the global and the local crop models as com-
pared to LAI.  

 
Figure 8: Plot of XX-scores of the cross-validated global LAI model. Samples are marked accord-
ing to the crop type. 

CONCLUSIONS 
In this study, we presented an approach to estimating LAI and DM based on field reflectance 
measurements from different geographic regions, acquisition times and crop types using PLSR. 
There was no all-purpose preprocessing method but results pointed out that the technique should 
be chosen with respect to the sensor and the parameter of interest. In general, pre-processing had 
less effect on the prediction accuracy of the LAI models than on the prediction accuracy of the DM 
models. Hyperspectral sensors (EnMAP, PentaSpek) and the superspectral sensor (Sentinel-2) 
performed as well as field spectrometer data for LAI assessment. For DM, prediction accuracy de-
creased for all tested sensor configurations, but not for EnMAP. The prediction accuracy of the DM 
models for multispectral sensors (Landsat 8, RapidEye) was generally low. The approach seems 
therefore best suited for the hyperspectral EnMAP mission, but results for the superspectral in-
strument on board the Sentinel-2 satellites were promising, too. However, application of the mod-
els to image data will require additional properties not considered in this study to be examined in-
cluding the sensitivity of the predictions with respect to the spatial resolution and the noise of the 
sensor, the viewing angle during image acquisition, and the quality of atmospheric correction with 
cloud detection. Grouping the data set according to the year of acquisition, the region of acquisition 
and the crop type did partly improve the model accuracy, but the mechanisms behind have not yet 
been fully understood. Additional data for crops like rape, sugar beet, and potato at various crop 
development stages is needed to gain a further insight. At that point, results suggest that crop-
specific models are best for predicting LAI.  



EARSeL eProceedings 14, Special Issue 2, 2015-16:  
9th EARSeL Imaging Spectroscopy Workshop, 2015 86 

Generally, model prediction accuracy varied depending on the deployed validation strategy. Com-
paring the performance of model pairs for a tested configuration, i.e. the wheatcv vs. wheatival mod-
el, prediction accuracy was mostly somewhat lower using cross-validation. Moreover, model per-
formance did not always show the same trend for both validation techniques, i.e., when comparing 
wheatcv vs. globalcv or wheatival vs. globalival. These results clearly demonstrated the need for addi-
tional sampling to extend the validation data base and to verify the accuracy and the robustness of 
the regression models. In future work, selected models shall be applied to image data with spectral 
characteristics tested herein. A validation of these image-based results with additional in situ refer-
ence measurements of the target variables will provide further information on the validity of model 
errors. In view of the low prediction ability of the PLSR models for multispectral sensors, such as 
Landsat 8 and RapidEye, non-parametric methods able to perform nonlinear data fitting (MLRAs) 
may provide a more powerful alternative. 
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