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ABSTRACT 
Multispectral images have been transformed into Tasseled Cap features to characterize the wet-
land properties for mapping purpose. The texture derivatives were applied to the brightness, 
greenness, and wetness using three texture measures based on the grey-level co-occurrence ma-
trix method. In this study, the data-driven window size over which texture measures are derived will 
be determined based on the experimental semivariograms instead of a trial-and-error method. 
Eight combinations of window sizes have been analyzed to evaluate the benefit of the proposed 
strategy. A supervised classification based on the maximum likelihood algorithm was applied to 
the three Tasseled Cap features and to their combination with each texture inputs under different 
window sizes. Classification accuracy is measured by the overall accuracy for the whole set of 
classification. User’s accuracy and kappa coefficient are used to estimate individual class accu-
racy. The combination of multiple window sizes from the Tasseled Cap features to derive texture 
measures for classification purposes is proposed according to the semivariograms. The overall 
accuracy of the spectral-textural classification shows a 95.5% accuracy, higher than the multispec-
tral classification alone. For the purpose of wetland mapping of the study site, the proposed com-
binations of multiple window sizes provide wetland class 92.6% accuracy higher than randomly se-
lected identical window sizes. 

Keywords: Texture analysis, semivariograms, grey-level co-occurrence matrix (GLCM), Tasseled 
Cap features, wetland. 

INTRODUCTION 
Information about land cover is essential for environmental monitoring. Remotely sensed data 
supply a current and important source of data for wetland mapping. Image texture quantifies the 
spatial variation of tone that is related to the distributions of different land cover types on the 
ground surface. However classical classification algorithms ignore the potential of the spatial in-
formation existing between a pixel and its neighbours when applied on a pixel-by-pixel basis. To 
achieve reliable and accurate results in mapping applications, image attributes within a land cover 
type over its neighbourhood should be characterized. Texture, the intrinsic spatial variability of ra-
diometric data, is a valuable feature to discriminate the different land cover types.  
Many approaches were developed for texture analysis. According to the processing algorithms, 
three major categories, namely, structural, spectral, and statistical methods, are common ways for 
texture analysis. Grey-level co-occurrence matrix (GLCM), one of the most widely used methods, 
contains the relative frequencies of the two neighbouring pixels separated by a distance on the 
image. Several statistical measures (1) such as homogeneity, contrast, and entropy can be com-
puted from the matrix to describe specific textural characteristics. Each texture measure can cre-
ate a new channel that can be incorporated with spectral features for classification purposes. 
However, a certain number of parameters directly associated with the GLCM method should be 
considered before computing texture measures. Two important factors, the combinations of tex-
ture features and the window size selection, have been examined according to their benefits on 
the classification accuracy. 
Various combinations of texture measures have been tested for different applications such as crop 
classification in agriculture (2) and forest species classification (3) in nature resources manage-
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ment. Results showed that incorporating texture features in classification was superior to the clas-
sification of the original image. A combination of three or four texture features performs better than 
the combinations of one or two texture features. But no rules have been recommended for the tex-
ture measures selection. The most appropriate combination of texture features depends strongly 
on the surface properties of the land cover types of interest. Since unique texture patterns were 
hypothesized to discriminate different land cover types, a proper window size that matches the 
patch size can extract the textural pattern of this particular landscape. Large window size can cap-
ture the spatial patterns of each land cover type better, but may contain more than one land cate-
gory, which could introduce systematic errors. The window should then be small enough to keep 
the variance low and to maximize the potential for class separability. Previous studies have been 
performed to examine several different window sizes (4,5). These trial-and-error methods are time 
intensive and the window size strongly depends on the attributes of the radiometric data for each 
particular case.  
Geospatial techniques utilize spatial information that considers the spectral dependence existing 
between a pixel and its neighbour. Radiometric data that are highly correlated within a range can 
be indicated through the semivariogram function (6). The digital number (DN) value of each pixel 
can be interpreted as a regionalized variable. Meanwhile, a data-driven semivariogram provides a 
method of measuring the spatial dependency of continuously varying phenomena. Recently, some 
techniques have involved geostatistical parameters deduced from the semivariogram function for 
image classification (7, 8, 9). Although suggestions have been made that the window size should 
be defined for each particular case, identical windows as fixed square pixel arrays were used for 
all input channels. The approach of this paper intends to analyze the spatial dependence of radio-
metric data by geostatistical methods to obtain the suitable window size for the landcover type of 
interest from data-driven semivariograms. For this purpose multiple window sizes will be used to 
derive texture measurements from the Tasseled Cap features – brightness, greenness, and wet-
ness - for wetland mapping. The objective of this paper is to assess the benefit of incorporating 
texture for classification by the proposed methodology.  

METHODS 
The study site is located within the boundaries of Prince Albert National Park in Northern Sas-
katchewan, Canada. Approximate coordinates of the study are as follows: 53°45’00’’N to 
54°00’00’’N and 106°00’00’’W to 106°25’00’’W. The elevation in the area generally decreases 
from west to east, varying from 501 to 747 m above sea level. The lowest elevation is Waskesiu 
Lake (elevation 501 m), while the highest (about 747 m) is in the western part of the site. Accord-
ing to the 7-year Meteorological Service of Canada (MSC) normals for 1996-2002, the mean 
monthly temperatures range from approximately -17.2°C in January to 17.5°C in July and the 
mean monthly precipitation varies significantly from 80.2 mm in July to only 14.7 mm in November. 
Multispectral data were obtained from the Landsat ETM+ sensor. The multispectral image was ac-
quired in August 1999 and processed at level 1G (standard geocoded image resampled to UTM 
projection). The scene was resampled to 25 m resolution by cubic convolution and a 1086×1086 
pixels sub-image was extracted for this study (Figure 1). 

Image pre-processing 
According to the definition given by the National Wetlands Working Group (1988), wetlands are 
characterized by three components: soil, vegetation, and water. A Tasseled Cap transformation 
utilizes a canonical component analysis to decompose multispectral image into three dimensions: 
brightness, greenness, and wetness. Wetland pixels can be extracted by using Tasseled Cap 
transformed images (10) since the brightness channel highlights areas of high reflectance; the 
greenness channel represents vegetated areas and the wetness channel marks areas that have a 
high water or moisture content. A Tasseled Cap transformation based on at-satellite reflectance is 
more appropriate for regional applications where atmospheric correction is not feasible (11). Thus, 
the six cloud-free multispectral bands were chosen which did not require atmospheric correction, 
because atmospheric data necessary for running the atmospheric correction algorithm were not 
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available. Raw digital numbers were converted to radiance and at-satellite reflectances were cal-
culated according to Landsat 7 Science Data Users Handbook (12).  

 
Figure 1: Location map of study area and Landsat-7 composite image (RGB=TM 4/3/2) 

 
Semivariogram 
The semivariogram was employed as a tool to model the spatially varying phenomenon of natural 
objects. The average change of a property is illustrated by a changing lag and the classical equa-
tion can be expressed as follows:  
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The experimental semivariance )(hγ  is defined as half the average squared difference between 
values separated by a given lag h , where h  is a vector in both distance and direction. While 

)( ixZ  represents the DN value at a pixel location ix , )(hN  means the total number of pairs. 
Semivariogram interpretation is usually focused on relating nugget, sill, and range parameters 
(Figure 2). In this study, lag h  increased by one pixel instead of a real measurement in length unit. 
Pixels separated within the range are highly correlated with each other. Range can be used as a 
measure of homogeneity. Automatic fitting of models to semivariograms is the main problem (13) 
with variogram model-based approaches for texture classification. Since the choice of model may 
be restricted to certain regions or classes, the coefficient of the model fitting the local variogram 
may be misleading and unreliable. Modelling was not used to fit the semivariance curves in this 
study; only experimental values of the semivariograms were used. Semivariograms of four land 
cover types (wetland, water, dense vegetation, and open vegetation) were examined. 

Image textural channels and classification 
Texture analysis, which provides a complementary tool to multispectral studies, has received great 
attention in image processing. The grey level is assumed not to be randomly distributed within an 
image, but to be associated with structures of land cover types. Texture reflects the local variability 
of grey levels in the spatial domain and reveals the information about the object structures in the 
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natural environment. In this study, texture features are computed over a moving window deter-
mined by semivariograms. Odd numbers of pixels from 5 to 11 were employed as window size for 
the three Tasseled Cap features to derive texture measures. In addition, combinations of multiple 
window sizes were also evaluated. The following texture measures were computed from the Tas-
seled Cap features: mean, variance, and angular second moment (ASM). To evaluate the effects 
of the proposed window sizes, data were subjected to a maximum likelihood classification algo-
rithm. Accuracy was assessed for wetland mapping. 
Although open water can be classified very accurately from the image, some misclassified errors 
did result from water pixels. Water bodies in the study area varied from few pixels to thousands of 
pixels due to the natural geographic conditions. A pixel-based image classification algorithm may 
eliminate small size water bodies. To minimize the errors from misclassification of the water body, 
the normalized difference vegetation index (NDVI) was employed to develop an upper threshold, 
which would identify pixels likely to be open water. One binary map highlighting all pixels within the 
image being considered open water was created according to this threshold. The map masked out 
the water-likely pixels to eliminate those pixels during the classification procedure. Therefore, only 
three classes were considered in the classification process: dense vegetation, open vegetation, 
and wetland. 

 
Figure 2: Example semivariogram showing nugget, sill, and range in image application. 

RESULTS 
Analysis of semivariogram behavior 
Semivariogram behaviours of four classes, water, wetland, dense vegetation, and open vegetation 
were examined in the study. An arbitrary size (34x34 pixels) was selected for each training site 
(Figure 3). The DN statistics (mean ± standard deviation) within the geometric size are presented 
in Table 1.  
While dense vegetation has higher brightness and greenness values, its wetness value is lower 
than for any of the other three classes. On the other hand, wetland and open vegetation have simi-
lar values in brightness and greenness. Although open vegetation has slightly higher vegetation 
density than wetland, these similarities are factors that decrease the signature separability of the 
two landcover types. In this study of spatial autocorrelation, experimental semivariograms of the 
three Tasseled Cap features were computed within the selected training areas for four directions 
(i.e. NS, EW, NNE, SSE) and for one isotropic curve. The semivariograms have different behav-
iours due to variations in the correlation patterns of the DN values. Only omnidirectional 
semivariograms are analyzed to extract the optimum lag distance for deriving texture features in 
the study. 
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Table 1: DN statistics (mean ± standard deviation) of Tasseled Cap features for four training sites. 

Class Brightness Greenness Wetness 
Water  50.41± 1.64  -38.30± 2.39  -65.95  ± 5.22 
Wetland  155.95± 12.78  -50.50± 2.77  -271.82  ± 25.19 
Dense Vegetation  180.56± 4.13  -24.79± 2.61  -283.03  ± 7.62 
Open Vegetation  134.47± 13.62  -47.60± 4.90  -230.665± 23.66 

 
Semivariograms computed for each class are unique (Figure 4) and have the following character-
istics. 
(1) Water: The semivariograms calculated from brightness, greenness, and wetness are essen-

tially flat, exhibiting little or no spatial correlation for lag distances greater than one pixel. Al-
though the nugget and sill values may vary with the DN data, the analogous curve behaviours 
can be observed from the semivariograms for the three different data features. 

(2) Wetland: Directional and isotropic semivariograms have similar behaviours either for bright-
ness or wetness features. They rose smoothly and reached the sill at a lag of 7 pixels. 
Semivariogram of greenness feature showed the /weakest variances among the training 
classes of the study area but the greatest variance in wetness. The curve of greenness rose 
steadily up to a local peak at a lag distance of 5 pixels and waved a little bit until it reached the 
sill at a lag of 11 pixels.  

(3) Dense vegetation: The semivariograms of dense vegetation calculated either from brightness, 
greenness or wetness features showed periodic forms in four directions. For the isotropic 
curves of the three Tasseled Cap features, the semivariograms reached a limiting value at a 
lag of 5, 9, and 5 pixels, respectively. 

(4) Open vegetation: Although open vegetation showed the greatest variances among the training 
classes in brightness and wetness features, the range was slightly larger than that of the wet-
land class. The semivariograms for both brightness and wetness features rose to a lag dis-
tance of 11 pixels, curving to a flat level fairly coincident to the DN variance of the training site. 
One significant difference should be noticed: Although wetland and open vegetation have 
similar spectral DN values in greenness feature, their semivariograms showed the difference 
in variance. 

 
Figure 3: Selected training sites for semivariance calculation. (1) Dense vegetation; (2) open vege-
tation; (3) open water; and (4) wetland. Composite image is illustrated by Tasseled Cap features in 
RGB=Brightness/ Greenness/ Wetness. 
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The semivariograms of the three Tasseled Cap features are used as criteria to determine the op-
timal window size for deriving texture measurements. A window size for each brightness, green-
ness, and wetness feature was determined according to the experimental semivariogram signa-
tures of wetland class presented in Figures 4. Therefore, the window size used to derive texture 
features from the three Tasseled Cap features were 7×7, 11×11, and 7×7 pixels, respectively. 

  

 

 
 
 
 
Figure 4: Omni-directional semivariograms of 
the four training sites extracted from the Tas-
seled Cap features: brightness (a), green-
ness (b), and wetness (c). 

Classification 

 
Figure 5: Graph illustrating comparison for classification accuracy for three classes based on the 
Tasseled Cap features and on different window sizes for texture measures. 
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The overall accuracy and accuracies of the three classes are illustrated in Figure 5. The three 
Tasseled Cap features were always used as the input channels for the classification. Texture fea-
tures derived from different window sizes were compared to assess their influence on wetland 
mapping. Consequently, the strategy utilizing semivariograms to determine the optimal window 
size was also evaluated. For this purpose, four identical window sizes from 5×5 to 11×11 and four 
combinations of multiple sizes were investigated.  

The comparison of spectral and spectral-textural classification accuracies indicates that introducing 
texture features into classification could provide a better result than spectral data alone. The over-
all accuracy increases by 4% at least (Figure 5). The proposed method predicting the preferred 
window sizes for deriving texture features as 7×7 for brightness, 11×11 for greenness, and 7×7 for 
wetness shows a highest overall accuracy of 95.5%. Incorporation of the texture features into the 
classification of the Landsat TM data improved the accuracy of the wetland class. The accuracy of 
the wetland class improved from 61.5% using spectral bands to 92.6% using a combination of 
spectral bands and texture features. Wetlands in the study area are fragmentary and distributed 
around small water bodies or in the river riparian. Nearly identical spectral reflectances between 
vegetation types cause the low signature separability between the wetland and open vegetation 
classes. Texture features therefore provide additional information that is used to distinguish the in-
significant differences in the spectral signature. 

Table 2: Summary results of accuracy assessment of spectral and textural classification. 

User’s accuracy (%) Kappa coefficient Band  
combination a 

Overall 
accuracy Wetland Dense 

Vegetation 
Open 

Vegetation Wetland Dense 
Vegetation 

Open 
Vegetation 

Spectral alone 90.4 61.5 95.7 95.0 0.56 0.93 0.90 
Spectral-textural    

Proposed size 95.5 92.6 99.4 93.3 0.92 0.99 0.86 
5×5 93.9 80.9 98.8 93.1 0.78 0.98 0.86 
7×7 94.7 86.2 99.4 92.9 0.84 0.99 0.86 
9×9 94.9 88.6 99.4 92.9 0.87 0.99 0.86 

11×11 95.3 90.4 99.4 93.3 0.89 0.99 0.86 
5,9,5 94.6 85.4 99.2 93.1 0.83 0.99 0.86 
7,5,7 94.1 83.3 99.2 92.7 0.81 0.99 0.85 
7,9,7 95.0 88.8 99.4 93.0 0.87 0.99 0.86 

a The window sizes used to derive the texture features from Tasseled Cap transformations are represented by 
numbers.  

User’s accuracy and kappa coefficients for spectral and spectral-textural classifications are com-
puted to estimate the accuracy of individual classes in Table 2. The table also illustrates the com-
parison between randomly selected window size and the one predicted by the semivariogram 
analysis. The window size is responsible for most of the variability in the classification, because a 
significant correlation is observed between class accuracy and selected window sizes used to de-
rive texture features. However, this trend was not found in dense vegetation and open vegetation 
classes. The accuracies of these two classes do not show much variation between different com-
binations of textural classification. Since the wetlands in the study area are fragmentary and vary in 
different sizes, the semivariogram captures the spatial correlation by predicting an appropriate lag 
distance for deriving texture measures. The kappa coefficient of the wetland class evaluated by 
adding proposed texture channels is 0.92, which is higher than the other randomly selected 5×5 
window to 11×11 window sizes. When examining the semivariogram of the greenness feature 
(Figure 4.b), the variance reached a local peak at a lag of 5 pixels. By using a 5×5 window for 
greenness, it shows a lower kappa coefficient for the wetland class. The result indicates that a 
small window size may lose some spatial information of the specific class. However template win-
dow size at 11 pixels, which is the range value related to the sill of the semivariogram, can provide 
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a better classification result. Utilization of multiple window sizes (i.e. 7×7 for brightness, 11×11 for 
greenness, and 7×7 for wetness) is proposed in the classification. Multiple window sizes can retain 
the integrity of the small windows while reducing the effects of noise encountered with large win-
dows. The result also illustrates the capability of improving the accuracy by applying this concept.  

CONCLUSIONS 
The overall accuracy indicated that the incorporation of texture measures into multispectral data 
could improve the classification result by 5% for this case study. Window size for deriving texture 
features is a factor contributing to classification accuracy. The study addresses the need to deter-
mine the data-driven window size predicted by the range of semivariogram for specific class in-
spection. According to the semivariograms of the target class, the resulting range parameter can 
provide superior discrimination and correlation results compared to those obtained using randomly 
selected identical windows. The proposed method shows the capability of increasing wetland class 
discrimination from 61.5% to 92.6%. This is a time-effective strategy that can be used to optimize 
texture derivations of remotely sensed imagery. Future studies will be performed to examine, if the 
pixels of these fragmentary classes can be grouped as segments and then take the advantage of 
texture analysis for identification of land cover units.  
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