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Abstract
Most methods applied for snow-cover mapping classify each pixel into snow and no-snow. On the
other side, a sub-pixel method classifies snow into several coverage classes or onto a continuous
scale. If frequent mapping is required, only low and medium spatial resolution sensors are available
(200-1000 m range). Classifying pixels into snow and no-snow only may be sufficient for large-
scale applications. The method presented here intends to solve the problems of the current linear
reflectance-to-snow-coverage sub-pixel algorithm. It gives a fast and very accurate estimate for the
actual snow cover at the sub-pixel level. The method is in particularly useful for hyperspectral data.
The method predicts local end-member spectra for snow and bare ground for each pixel. Vegetation
end-members are predicted using a vegetation map made from another satellite image and a vegeta-
tion development model. Furthermore, a local snow end-member-spectrum predictor is used to pre-
dict a spectrum, which matches the development stage of the snow. The predictors also compensate
for terrain relief effects while generating the actual end-member spectra. The prior information and
the predictors allow the number of possible end-members for each pixel to be very low. An iterative
algorithm is proposed in order to unmix two and three class component spectra for the prediction of
the areal contribution of each class. The method has been applied to field measured spectra. Further
experiments are ongoing for airborne DAIS-7915 hyperspectral data covering the Heimdalen test
site in Jotunheimen, Norway. The spatial resolution of the DAIS data is reduced to 250 m simulat-
ing a medium-resolution sensor. The preliminary results show that the new method gives higher
accuracy and reasonable computation time. However, further assessment on larger data sets is nec-
essary to make a full evaluation of the method.

Introduction
Seasonal snow cover has an extent during the winter months of 30-50 million km2. This results in a
substantial impact on climate processes, weather and the life in general of people living within this
area. Seasonal snow cover is a significant water resource in many countries supplying electricity
and freshwater. It is also a source of avalanches and floods. Its importance combined with its huge
extent resulted very early in the history of remote sensing in snow-cover monitoring applications by
satellite.
A large range of methods has been used for snow-cover mapping. These include classical ap-
proaches applying statistical supervised classification (1 and 2) and unsupervised classification us-
ing clustering (e.g., see 3). Hybrid methods combining the two approaches have also been devel-
oped (4). An alternative approach is to apply physically-based methods (e.g., see 5). This is very
common within meteorology (6), and has also been the approach when developing the MODIS al-
gorithm (7), which is part of the USA's global climate monitoring system.
All the above-mentioned algorithms are snow/no-snow methods classifying a pixel into either snow
or no-snow. Alternatively, sub-pixel methods may be used, which classify each pixel into one of
several coverage classes or onto a continuous scale. If frequent mapping is required, which is the
usual case during the snowmelt season, only medium and low spatial resolution sensors are avail-
able (200-1000 m range). Classifying pixels into only snow and no-snow may be sufficient for
large-scale applications, like global snow-cover monitoring for environmental applications. How-
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ever, for medium and small-scale applications, like mapping catchments for hydropower produc-
tion, or high-precision large-scale mapping, more exact information about the actual snow coverage
inside a pixel is needed.

The need for higher accuracy resulted in the invention, by Norwegian users, of a simple algorithm
for sub-pixel snow-cover mapping using NOAA AVHRR data already in the beginning of the
1980ies (8 and 9). The method is based on the assumption that there is a linear relationship between
snow coverage and measured reflectance. When this relationship is established, it is an easy task to
classify each pixel into snow-cover percentage or a coverage category. In (9), four categories were
used. The relationship is established by using training areas or interpretation of a histogram of the
image. A population of 100% snow covered pixels is identified and determines the reflectance for
100% snow coverage. A corresponding procedure is followed for 0% snow coverage. The method
has been applied operationally in Norway since it was developed, and has also been used in Canada
(10). The method has later been extended with automatic training (11), automatic geocoding and
automatic cloud detection.

A relatively new approach to the problem of measuring snow at sub-pixel level is linear spectral
unmixing. This is particularly suited for sensors having a high number of bands, imaging spec-
trometers, but it is also possible to use sensors like Landsat TM. Linear spectral unmixing assumes
that a pixel is composed of several different classes, or end-members, and tries to estimate the aerial
coverage of each class. Hence, the method does not rely on the assumption of one "background
class" like the method described above. In (12), spectral unmixing for snow classification using a
linear mixture model is introduced. The actual accuracy of the classification using spectral unmix-
ing, was studied by  (13) for an area in Mammoth Mountain in Sierra Nevada, California. The
AVIRIS airborne spectrometer was used, and the actual snow cover was determined from aerial
photography. The agreement between the snow cover map generated by spectral unmixing and the
aerial photography was found to be 92% for areas of low relief and little shade. The agreement fell
to about 71% in areas that were extensively shaded.
A disadvantage of spectral unmixing, as applied in (12) and (13), is that the method is supervised.
The spectral end-members have to be identified manually by training. In (15), a method for unsu-
pervised spectral unmixing is proposed. The method determines end-members automatically and
then compares them to a spectral library to estimate the mixture of each pixel. The first step is to
use a classification tree to fragment the image into distinct land and cloud cover classes (16). The
dimensionality and number of end-members are then determined for each fragment using principal
component analysis. Each fragment is unmixed with all end-members sets located on its convex
hull, and the best set is selected. The end-member spectra are corrected for the atmosphere using a
radiative transfer model, and the end-members are then identified in a spectral library. The final
snow cover is then determined from the best mixture model taking into account possible end-
member impurities. The method was tested on Landsat TM data and found to have similar accuracy
to aerial photography.

• The motivation for the new method presented here is that:

• Sub-pixel accuracy is a requirement for small-scale applications

• Sub-pixel accuracy is an advantage for large-scale applications

• The classical linear reflectance-to-snow-coverage method is far from accurate enough

• Classical linear spectral unmixing is a supervised method needing manual intervention

• The above-mentioned proposal for unsupervised classification is computationally demanding

• Spectral unmixing may in general give very inaccurate results since many combinations of end-
members may give the same resulting spectrum

The new method presented here intends to solve or limit the above-mentioned problems. The
method is useful, in particular, for hyperspectral data. It applies a new iterative spectral unmixing
algorithm in the last step. The number of spectra to unmix is limited to a minimum by a priori in-
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formation. Topographic effects are compensated for. The method applies local end-member spectra,
which are generated for each individual pixel by special predictors for snow, vegetation and other
bare-ground classes.

The method has been tested on field-measured spectra and is currently evaluated on airborne DAIS-
7915 hyperspectral data covering the Heimdalen test site in Jotunheimen, Norway. DAIS 7915
(Digital Airborne Imaging Spectrometer) is a 79 bands spectrometer. Together with the airborne
synthetic aperture radar EMISAR, these sensors comprise the European Airborne Sensing Capabili-
ties (EARSeC) developed as an initiative by the European Union. The spectrometer was built by
Geophysical Research corp. (GER), USA, and has been improved by Deutsches Zentrum für Luft-
und Raumfahrt e.V. (DLR), Germany. Due to requirements for very accurate calibration, a calibra-
tion laboratory was built at DLR. Two flight periods were accomplished in 1997 and 1998 as part of
a European-wide campaign.

The data were acquired in June 1998 as part of the DAIS-LSF’98 airborne campaign and cover
most of a 100 km2 catchment. Very accurate snow-cover data were obtained at the same time from
aerial photographs. A vegetation map was generated from Landsat TM data, and an accurate DEM
was generated from the aerial photographs. Calibration end-member spectra were measured in the
field using a FieldSpec portable spectrometer. The spatial resolution of the DAIS data was reduced
to 250 m simulating a medium resolution sensor. The new method and the classical linear reflec-
tance-to-snow-coverage method are applied to the data set.

The Snow-Cover Classification Method
A brief overview of the approach proposed will be presented followed by a detailed description.
The method comprises five fundamental components: accurate prior data about the area to map,
models for the spectral development of the end-members possibly present, radiometric correction
for terrain effects, radiometric atmospheric correction and a new iterative spectral unmixing algo-
rithm for the retrieval of the actual snow coverage within the pixel. The prior data comprises an
end-member class map for the bare ground and a digital terrain model. The terrain model is only
required when radiometric terrain correction is needed. The spectra for snow, vegetation and to
some degree other bare ground classes change more or less all the time, with the largest changes
present during the melting season when the snow metamorphosis develops fastest and the vegeta-
tion turns green. Predictors for the spectra have been developed, which limit the number of end-
member spectra to decompose for a given pixel to a minimum. The decomposition is done by the
new spectral unmixing algorithm.

End-member Class Map
The classical reflectance-to-snow-cover sub-pixel mapping algorithm assumes a single bare-ground
spectrum for the whole image. The use of linear spectral unmixing by several authors compensates
for this by assuming many possible classes present and tries to estimate the actual classes by spec-
tral decomposition. However, due to the temporal development of the classes, an extreme number
of end-members must be used to cover all the spectra that may be present. With very many spectra
to unmix, there are often several solutions giving the observed spectrum. In particular, the snow
area searched may be wrongly estimated. Here, it is proposed to use an end-member class map giv-
ing prior information limiting the number of classes to unmix for each pixel. By the term end-
member class is here meant a group of end-members representing one thematic class, like the end-
member class grass, which is represented by a set of different spectra all representing various de-
velopment stages of grass.
For the geographical area to monitor, an end-member class map has to be generated. The map, Me,,
can be expressed as:

Me(x, y) = {Sc | c is a class end-member at location (x, y)} (1)
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where (x, y) is the geographical position (covered by a pixel) and Sc is the set of all possible end-
member spectra for class c. In order to reduce the total number of spectra, models will be used to
generate the spectra in Sc for vegetation. Furthermore, Me is in practice implemented as a map of
references to a spectral library of actual and model end-members (see Figure 1).
In order for the method to be of interest for medium and large-scale operational applications, the
end-member class map must be generated with minimal human intervention. The map may very
well be made by classification of a satellite image of the same area acquired during snow-free con-
ditions in the summer. This approach is actually much better than using a regular vegetation map
made by other means because it is the spectral classes that are needed, not the actual vegetation
classes. As long as two different vegetation classes have the same spectrum, they can be treated as
one end-member here. Additionally, the usual generalisation present in a vegetation map is a deficit
for this application. It is proposed to use an unsupervised classification method, preferably one that
also does not need to know the number of classes to cluster. ISODATA (17) has shown to work
well for the task given here. The clustering algorithm also takes into account the data distribution
within a cluster to determine whether it is composed of more than one class.
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Figure 1: Conceptual overview of the spectral end-member class map.

Spectrum Predictors
The situation we have for snow and vegetation spectra is a continuous development from an initial
spectrum to a final spectrum during the winter-spring season. The change over time represents a
continuous function. However, the gradient will in general not be a constant, but vary with the
changes in the growing conditions for vegetation and incoming energy and precipitation for snow.
If we represent a reflectance spectrum by a vector, the situation can be described as follows:

sf = si m (2)

where sf is the final spectrum, si the initial spectrum and m the modification spectrum. Intermediate
spectra can be generated by scaling the modification spectrum:

s = si m r  (3)

where s is an intermediate spectrum and r is the corresponding scaling factor within the range [0,1].
The path of s in the hyperspectral space, for all values of r successively from 0 to 1, represents the
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development history of the spectrum s. r is a function of time, r(t), but in general not a linear func-
tion as commented above. Hence, it is not straightforward to predict r. The most fruitful approach
would probably be to estimate the effective time, te, which is linearly dependent on the product of
time and the development factors, like the air temperature for snow, and the air temperature and soil
moisture for vegetation. (This approach corresponds to the use of degree-days in snow hydrology
modelling.) However, here a more direct (and safe) approach is applied by measuring features in the
mixed spectrum with a magnitude which is proportional to the development stage (i.e., r).

Vegetation Spectra

The most characteristic feature in a vegetation spectrum is the red-edge, a very steep gradient in the
near infrared (e.g., 18). The magnitude of the feature is proportional to the fraction of green vegeta-
tion (green area) covering the field of view. This means that if the feature is almost non-disturbed in
the mixture spectrum, it can be used as an indicator of the development stage of the vegetation part
of the mixed spectrum. The red edge is a local phenomenon in the spectrum (covering an interval of
about 100 nm). The feature should be non-disturbed as long as there are no steep gradients in the
other spectra it will mix with.

A gradient operator for the red edge, Gre, is here defined, corresponding to a gradient over the inter-
val 650-750 nm. There is a linear relationship between r and Gre:

rv = avGre,v + bv, (4)

where v is an index to the vegetation end-member class in the spectral library. Hence, there is one
such relationship for each vegetation end-member class.

Snow Spectra

A snow spectrum has typically high reflectance values in the visual part with the highest values
around 500 nm where the reflectance is 90-100% (5). It decreases in the near infrared, most steeply
between 1200 and 1500 nm. There are a couple of peaks around 1800 and 2250 nm. However, the
reflectance in the short-wave infrared varies a great deal with grain size. The 1800 nm peak may
have a reflectance of about 40% for a grain size of 50 µm, while it is reduced to about 3% for a
grain size of 1000 µm. There is also a reduction in visible wavelengths for reduced grain size, how-
ever, the mentioned grain size reduction amounts to a reflectance reduction of only about 5% at 500
nm. What may reduce the reflectance much more at visual wavelengths are the presence of dark
particles, impurities, in the snow (like wind-transported soil particles). The phenomenon typically
takes place late in the snowmelt season with a mixture of bare ground and snow cover, and will
usually increase with time until the snow has gone. The concentration of impurities is difficult to
predict by modelling, but could be predicted based on a time series of data through several seasons
and registering the frequency and level of the phenomenon locally. Impurities will not be modelled
explicitly here, but in general taken into account by overcompensating for increased grain size in
visual wavelengths.
One of the steepest gradients in the snow spectrum is around 1400 nm. The reflectance is reduced
from about 70% to 10% for a grain size of 50 µm, and from about 20% to 1% for a grain size of
1000 µm. This spectral feature will here be nicknamed the NIR edge. As for the red edge of vegeta-
tion, if the feature is relatively non-disturbed in the mixture spectrum, it can be used as an indicator
of the metamorphosis stage of the snow. Comparison with the typical spectra for vegetation, rock
and soil shows that there are no other steep features in the 1400 nm region.

A gradient operator for the NIR edge, Gire, is defined, corresponding to a gradient over the interval
1350-1450 nm. The linear relationship between r and Gre is established:

rs = asGire,s + bs, (5)

where s indicates the end-member class snow in the spectral library.
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Rock and Soil Spectra

The vegetation cover decreases with elevation, and high-mountain areas are typically covered with
only a mixture of rock and bare soil. Rock is also present within vegetated areas, and soil may also
be visible, especially in the early part of the vegetation-growing season and in areas temporally
covered with water. Minerals (rocks and components of soil) have very characteristic spectra in the
infrared part of the spectrum (in particular at longer wavelengths) (19). At visible and near-infrared
wavelengths, the spectra are typically much smoother with very few unique features. Rock and soil
spectra are typically very stable over time, however, they are influenced by moisture (20). The ef-
fect of water is typically to reduce the reflectance in visible and at short-wave infrared wavelengths.
It may be reduced as much as 40% in the near infrared, depending on the amount of water. For soil,
organic matter also reduces the reflectance effectively, however, the amount of organic matter is
assumed to be constant over time here.

In the model proposed to use here, it will not be discriminated between soil and rock. The effect of
moisture is proposed to be modelled by a mixture of dry soil/rock and completely wet soil/rock.
This is of course not physically true, but should be sufficient here since we are only interested in the
total surface area covered by soil/rock. This gives the following spectral model:

ss/r = adsds/r + awsws/r, (6)

where ss/r is the resulting spectrum, sds/r is the spectrum of dry soil/rock, sws/r is the spectrum of wet
soil/rock, ad is the fractional area of dry soil/rock and aw is the fractional area of wet soil/rock. In
practice, these spectra may be established by measuring a lot of dry and wet soil and rock samples
and, then, determining the mean dry and mean wet spectrum. As for vegetation, the types of soil
and rocks will vary between different geographical regions. Hence, soil and rock spectra used in the
spectral library should not be treated uniquely, but should be selected according to the geographical
region.

The Algorithm
The description of the algorithm proposed is here limited to a combination of the two end-member
classes snow and vegetation. The two classes have spectra varying with time as their characteristics
changes through the season. The algorithm assumes that the sub-pixel spectral contribution of snow
and vegetation can be combined in a linear way according to the two classes’ areal contribution to
the pixel’s total reflectance:
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The equations applied in the iterative algorithm are derived from this equation. The algorithm is
defined as follows:
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6. Identify a better approximation to the snow spectrum, S(λ), based on the NIR-edge
gradient, GNIRedge

7. IF > 2 iterations AND 
2

ˆˆ )()( i
v

i
s aa ∆+∆

< maxâ∆  THEN stop ELSE goto Step 1

The a priori spectra selected in Step 0 are typical spectra expected for the current time of the season.
Good a priori spectra estimates assure quicker convergence. Steps 1-7 represent a loop making an
iterative estimation of the snow and vegetation spectra and their areal contribution. A new estimate
of the snow fraction is found in Step 1 at wavelength λas where the spectral contribution from
vegetation is rather small and varies little with the development of the vegetation (see Figure 3).
The new estimate of the snow fraction is applied in Step 2 for making an estimate of the vegeta-
tion’s reflectance at the wavelength region λrededge where the vegetation has the characteristic so-
called red edge. A better approximation to the actual vegetation spectrum is predicted from the red-
edge gradient Grededge in Step 3. Similarly to Step 1 for snow, the vegetation fraction at λav is esti-
mated in Step 4, now applying the new estimate of the vegetation spectrum. The steep reduction of
the reflectance for snow in the near infrared is here nicknamed the NIR edge. The snow reflectance
is estimated for the spectral region λNIRedge in Step 5. The spectral characteristics here of snow, GNI-

Redge, are used to predict a better spectrum for the snow. Step 7 determines if the iterations should
continue or stop. At least two iterations are run, and the algorithm stops if the changes of the areal
estimates of snow and vegetation change less than a given value between two iterations (the maxi-
mum error accepted).

Experiments

The Data Set

The test area, Heimdalen, is located in the Jotunheimen mountain area in Norway (9.0° E; 61.4° N).
The area is of about 100 km2 with an elevation range of 1050-1840 m a.s.l. The area is free of tall
vegetation except for some birch in the lowest locations (not within applied data).
Heimdalen was covered by DAIS 7915 image acquisition on 21 June 1998 between about 8:13 and
9:31 GMT (about 9:30-10:50 true solar time). The imaging spectrometer has 79 bands covering the
spectral range 0.4-12.6 µm. Some sensor characteristics are given in Table 1. The dynamic range is
15 bits. The sensor scans with a swath angle of ±26° generating lines of 512 pixels. The flight alti-
tude was fixed such that the mean pixel size was 5 × 5 m2. Ten stripes, of a total length of 90 km of
data with a swath with of 2.5 km, were acquired. Seven stripes were oriented with flight direction
parallel to the solar plane, thereby minimizing anisotropic reflectance, while three stripes were
flown perpendicular to the solar plane in order to maximize the anisotropic reflectance.

Table 1: Spectral characteristics of DAIS 7915

Wavelength
interval (µµm)

Number of
bands

Bandwidth

0.4-1.0 32 15-30 nm
1.5-1.8 8 45 nm
2.0-2.5 32 20 nm
3.0-5.0 1 2.0 µm
8.0-12.6 6 0.9 µm

A digital elevation model (DEM) was generated for the whole area based on 1:40,000 scale aerial
photos acquired under snow-free conditions on 15 August 1998. The 14 photographs from two
stripes were scanned, and a block of stereo models generated using a digital photogrammetric work-
station. Automatic co-registration of image pairs was done, followed by manual absolute orientation
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using ground control points. Terrain elevation was then derived for 5 × 5 m2 pixels with a height
accuracy of about 1 m.
In order to get an accurate map of the snow cover, aerial photographs were acquired simultaneously
with the DAIS data. A similar flight plan and data processing procedure as for the DEM generation
was followed. The result was a 1 m spatial resolution orthophoto covering the whole study area.
A snow mask was derived from DAIS band 25 (center wavelength 912 nm) and controlled against
the orthophoto. The orthophoto could also have been used, but this approach was avoided in order
to eliminate co-registration errors affecting the evaluation of the classification accuracy.
A field campaign was carried out during the image acquisition. Two field teams measured the snow
parameters grain size, wetness, density, temperature and the spectral reflectance by a FieldSpec
spectro-radiometer covering the spectral range 350-2500 nm. In addition the air temperature was
measured. The snow parameters were measured at nine different point locations. Complementary
ground temperature measurements were done at seven snow-free locations using a digital ther-
mometer with physical ground contact and an IR thermometer with spectral coverage 7-16 µm. The
location of each point was determined by GPS.

Figure 2: One of the DAIS image stripes showing the scattered snow conditions. A cloud and its
cloud shadow is visible to the lower right.

Results
The first results of the experiment presented here are limited to the application of the field-
measured spectra. A series of combinations of snow and vegetation spectra simulating different
areal contribution of the two classes has been made. The iterative algorithm has then been applied
to unmix the two spectra while estimating the sub-pixel fractional area of each class. The results
show that it was possible to predict the fractions with an error of typically < 3%. An example of
field-measured spectra and their linear combination with 50% fractional area each is shown in Fig-
ure 3. The three spectral regions with large spikes are due to sensor noise.

Figure 3: Two typical snow and vegetation spectra are shown together with the combined spec-
trum. The spectral regions applied in the iterative algorithm are indicated with the ar-
rows and associated variables estimated using these regions (see the description of the
algorithm).

a aV S
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Discussion And Conclusions
The first results presented here are limited to laboratory experiments with linear combinations of
field-measured spectra. The results so far are very promising indicating that the iterative spectral
unmixing algorithm is able to reasonably correctly predict the actual fraction of snow within a pixel.

However, there are several limitations to the experiment that makes it impossible to assess the true
performance of the algorithms in operational applications. First of all, the algorithm tested so far is
only the two-class version. A three-class version will have to include the combined class rock/soil.
The most important error sources include spectral variations due to the topography, natural spectral
variability not accounted for in the spectral model/spectral library, presence of other ground classes
and spectral variability due to the atmosphere. The topography and atmosphere is corrected for in
the method proposed, however, the performance of these corrections will always be limited by the
accuracy of the digital terrain model available and the accuracy of the atmospheric model.
The method also builds on some assumptions that it has not been possible to verify so far. It is as-
sumed that there is only one dominating spectrum for each of the end-member classes snow, vege-
tation and soil/rock within a pixel. Additionally, it is assumed that the anisotropic effects of snow
are small, and it is assumed that the soil and rock can be treated as a combined spectral end-
member.

The current experiment is followed by an experiment evaluating the method for 250 × 250 m2 pixels
based on the DAIS data within the spectral range 0.4-2.5 µm. DAIS pixels of 5 × 5 m2 are aggre-
gated into the larger pixels. The DAIS data is also used for assessing the performance of the algo-
rithm on the 250 × 250 m2 pixel data. Original data is classified by standard methods into snow and
no-snow, and the fraction of each class is calculated for the 250 × 250 m2 pixel data making it pos-
sible to accurately assess the performance of the method. The aerial photos are similarly used as a
ground truth to assess the accuracy.
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