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ABSTRACT

The presented mobile multisensor system consists of a LIF spectrometer, a reflection spectrometer,
and sensors for temperature, pH value, redox potential, and conductivity for in situ investigations.
Additional sensors can be integrated easily. This system is suitable for a fast analysis of a great
number of samples (environmental monitoring). The very short measuring time and the low costs of
measurements are the main advantages of the system in comparison with the chemical standard
analysis. One example of a wastewater analysis shall demonstrate the characteristics of the system.
A neural network shall be used as a model for the evaluation. The system can be adapted to various
tasks. The margin of error varies between 5% and 25% in dependence on the application.
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INTRODUCTION

Nowadays a great deal of new demands is made for the sample analysis in environmental monitor-
ing. These demands cannot be fulfilled sufficiently by using conventional chemical methods. For
this reason a new method for fast analysis has been developed at the Institute of Biophysics, Uni-
versity of Hanover. This method is relatively simple and can be performed at low costs.

The main conditions for environmental monitoring are a simple performance of in situ measure-
ments and reliable online analysis of the achieved data. In this area the conventiona chemical
analysis often proves to be too complicated concerning the temporal as well as the financial aspect.
Therefore, special emphasis was laid on a good implementation of in situ and online measurements.
Furthermore, it was found that single examination methods are often not sufficient to deliver clear
results in a complex environment. Only the inclusion of several methods enables a useful interpre-
tation of the complex interactions. Therefore, a multisensor system was developed which can basi-
cally deal with facts which do not have to be completely understood and which therefore (or for
other reasons) cannot be pressed into a set of strict analytical rules. Physical parameters such as
temperature, pH value, and conductivity and also chemical parameters such as the specific fluores-
cence and absorption of molecules are involved in the measuring process.

Taking this system into consideration it is not a measurement in a strict sense but rather a simula-
tion of a measurement. Evaluation models which enable such a system can be generally named
metaheuristic. Mathematically spoken they are methods and agorithms for the solution of non-
linear problems. The most important representatives are artificial neural networks (ANN), genetic
algorithms (GA), and the fuzzy logic. All of these methods have already been used for several dec-
ades. The evaluation model which is used in this measuring system is the ANN, a multilayer per-
ceptron (MLP), whose training algorithm is a GA besides the commonly used back-propagation
algorithm (1, 2).
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Concerning its precision, the demands which can be made on such a measuring system have proven
to be very variable. So the margin of error varies between 5% and 25% in dependence on the appli-
cation. In some cases this system can only be used for the estimation of orders of magnitude and in
extreme cases it only allows for ayes or no answer regarding a certain state of the examined object.
Other applications, however, deliver relatively exact results. Because of these circumstances the
main application of the introduced system is in the ranges for which no proven process model exists
or the financial or temporal advantages predominate the disadvantages of this system.

The presented measuring system only shows the basic construction; it can be varied. Therefore,
measuring devices with a computer interface can be integrated rather easily. Measuring results from
an apparatus without such an interface can be transferred manually. Thus, only an automation of the
measuring process is excluded.

The adaptation of the measuring system (hard- and software) to new tasks has to be done manually.
At the moment the oxygen concentration can be added to the above-mentioned physical parameters.
These parameters can be used directly as input values after having been normalized specifically for
the ANN.

The second class of parameters which can be used are spectroscopic data. Due to the large amount
of some measuring data a reduction and a pre-processing of the data are necessary. The average
amount of data of a spectroscopic measurement comes to about 1,000 floating point numbers (in-
tensity over wavelength). Normally such an amount is too large for the modelling system so that
chemometric methods have to be used to reduce the amount of data.

In principle data can be used for the evaluation which are no measuring parameters in a strict sense.
Such data could be the day- or the process time. Taking periodic processes into consideration one
can easily imagine that time is a useful factor to describe such a process.

Besides the adaptation of the evaluation process also a mechanical adaptation of the sensors has to
be made according to the task. Due to the great variation of physicochemical sensorsit is normally
no problem to adapt them. Those sensors are available for nearly al ranges. For the spectroscopic
evauation of liquid samples of reactors a bypass can be installed which is activated by a peristaltic
pump and which makes the medium pass the sensor of the spectrometer. An optical fibre can be
used for the investigation of solid material which e.g. leads the laser beam to the measured object
when measuring laser induced fluorescence and which leads the fluorescence signal to the spec-
trometer by using a second channel.

METHODS
Adaptation of the evaluation model

The simulation is mainly based on a training algorithm and its capability of optimising the inner
structure of the MLP; a process which is called teaching. Therefore, an extensive training has to be
performed before the measurements are started and the network is adapted to its appropriate task.
During this training procedure the input data are faced with the output data of the network. The
training algorithm now tries to minimize the error between the expected results (taken from a par-
allel measurement with a conventional method) and the current output (supervised learning). From
the mathematical point of view the output data become a representation of the input data. A simpler
expression is that the network - when the training is completed - does a kind of pattern recognition
on itsinput and tries to generate the desired output from it. Therefore, it is very important for a suc-
cessful simulation that there is a sufficient correlation between input and output data. If such a cor-
relation exists, it will normally be used by the network. The MLP is strongly related to the classic
multivariate regression (3).

The most remarkable characteristic of this processis certainly the fact that the user does not have to
know anything about the correlation between input and output data. The choice of the input data can
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therefore be optimised by the training success. Process models of such a kind will be classified as
non-parametric models, as the input parameters in comparison to the output parameters are non-
specific from the user’s point of view.

There are two main reasons for an excessively high output error. Configuration problems of the
ANN may be one reason for that. Another reason may be an insufficient correlation between the
input and the output data. One can improve the result by taking more parameters into consideration
which allows for a better characterization of the measuring object. In this connection it should be
mentioned that input data which are not part of the correlation can be recognized and excluded by
the network during the training phase. Up to a certain number of input parametersit is conducive to
add new ones. If too many parameters are used, the effect may be reversed and the error of the out-
put may increase again. Therefore, it can be said that good results demand an optimum of selection
and amount of input parameters.

Experimental set-up

The sensors which are used here for the determination of physical parameters such as temperature,
pH value, conductivity, and oxygen are standard sensors (Consort). Therefore, they shall not be
described in more detail.

The inclusion of spectroscopic data for the evaluation of molecular specific parameters is a more
complex problem. For that purpose laser-induced fluorescence spectroscopy (L1F) is used; a method
which has aready proven to be suitable for in situ measurements (4, 5). Besides a nitrogen laser
(Lasertechnik Berlin) for the excitation at 337 nm we aso installed a tuneable dye laser (Lasertech-
nik Berlin) including a frequency doubling crystal for the range between 200 nm and 700 nm. The
fluorescence spectrum is recorded by a spectrometer and a CCD camera (Oriel Instaspec 1V) which
can pass its data directly to the evaluating computer. Further spectroscopic data are gained from
reflection and absorption measurements. A tungsten halogen lamp (Mikropack) serves as a light
source. In order to make the handling easier for in situ measurements all the beams are led through
fibre optic components. The samples are fixed in such a way that the spectroscopic data can be
gained without an additional darkening.

All measurements described, the physical parameters as well as the LIF spectra, can be performed
simultanously to utilize the rate advantage of the evaluaion model. The whole software is imple-
mented in Sun Microsystem's Java, thusiit is runnable on any Java supporting platform.

Data pre-processing and evaluation

Normalization of the physical parameters to the specific size of 1 for the ANN is the only necessary
pre-processing of these input data. The pre-processing of the spectroscopic datais more complex. A
great number of efficient methods for a multivariate data analysis are suitable for performing the
necessary reduction of alarge amount of data (6). The most important methods are the factor analy-
sis, the K-means algorithm for cluster analysis, and various smoothing algorithms for suppressing
the background noise of the CCD camera.

The amount of data can also be minimized manualy. The plot of the spectroscopic data may show
some characteristics which can specifically be separated by simple methods such as the determina-
tion of the derivative or the mean value, see Figure 1 and a comment on it below. Also the selection
of the wavelength range can be limited with basic background knowledge about the examined ob-
ject.
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Figure 1. Fluorescence spectrum of yellow substance. Samples were taken
from three different clarifiersof a communal purification plant

RESULTS

In one demonstrated example three input values will be used as the basis for a simulation of one
output value. Asinput parameters the temperature, pH value, and conductivity of a primary clarifier
in a purification plant will be used, see Figure 2. The ammonium concentration of this clarifier is
the value which should be simulated (Figure 3). The ammonium content was determined using a
conventional method and measured every fifteen minutes together with the input data.

0,8+

0,74

normalized

0,6

0,5+

0,4

0,34

0,2+

- - - - pH-value [

conductivity

. temperature ¥ bend (see text)

—
950

T T T T T T T T T T T T T T
1000 1050 1100 1150 1200 1250 1300 1350 1400

measuring points (15 min distance)

Figure 2. Input parameters for the neural network, measured in a

primary clarifier of a purification plant. All values were normalized

to 1.
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Due to the fact that the
used training agorithm
does not take any time
relation  between  the
measuring points into ac-
count, they have no tem-
poral dependency. Thus
the sequence of the input
of the measuring points
has no influence on the
result of the training. Sin-
gle measuring points and
also ranges of measuring
points can be excluded.
Records out of log files
used for the training phase
can be combined freely
with each other. Due to
disturbances during the
measuring process, ranges
had to be excluded from
the training data quite
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often. Asaresult of this, sharp bends can be seen in the curves of Figures 2 and 3.

The first layer of the configuration of the MLP in this experiment consists of three input neurons,
followed by a hidden layer with tweny neurons and an output layer with one single neuron (Fig-

ure4).
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Figure 3: Measured and simulated ammonium concentrations in a
primary clarifier of a purification plant.

The result of this is a
number of 80 internal
network parameters
which can be optimised
by the training algo-
rithm. The training data
set consists of about
3,400 measuring points.
The relation of these two
numbers excludes that
the MLP is able to learn
the assignment of input
and output data by heart.
Under appropriate con-
ditions ANN can man-
age that. The configura-
tion in this experiment,
however, does not have
enough network para
meters to do so. Ac-

cording to this fact and the success of the training which can be seen in Figure 3 one can conclude
that the training process uses a correlation between the input and the output datain order to deliver

the present results.
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Figure 4. Configuration of the used multi-layer perceptron
(MLP). Input layer with 3 neurons, a hidden layer with 20 neu-
ronsand an output layer with 1 neuron.
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The actual success of the
training can be checked
by carrying on measuring
conventionaly after the
training phase is comple-
ted. If archival data are
used for the training, a
certain amount of data are
held back and when the
training has been com-
pleted, the check can be
done with these data. The
training data used for this
experiment originated
from log files of a com-
munal purification plant
which can be regarded as
archival data in this case.
Therefore, 25% of the
overall data were held
back. The subsequent
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Figure 5: Check for the actual success of the training process. Measured and

simulated ammonium concentrationsin a primary clarifier of a purification plant.
The measured values wer e excluded from the training process.

check of the training success with them is shown in Figure 5. The results yielded by the check
show the same errors as the training data.

DISCUSSION AND CONCLUSION

Due to the high error of up to 25% it is recommendable to add more measuring parameters in order
to better characterize the measuring object. The correlation between the three given input values
and the output is possibly not sufficient in order to simulate the exact course of the ammonium
curve in detail, which isaprincipal reason for an excessively high output error, see above.

The wastewater purification process mentioned here is an aerobic process for wastewater treatment.
Besides the living micro-organisms which eliminate the biologically degradable waste by consum-
ing oxygen also ammonium salts have an effect on the purification process due to their oxygen-
consuming character (7). Thus, it is conceivable to include the oxygen content of the clarifier as a
possible sensible parameter. Additional parameters, used for solving similar tasks with better results
(8, 9), are the turbidity of the samples and the redox-potential mentioned above.

Further experiments shall show that it also makes sense to include spectroscopic data. Preliminary
experiments already give a hint that the information in the existing spectroscopic data can be easily
included in the evaluation by the mentioned chemometric methods. Figure 1 shows that already a
simple linear fit function allows for some statements about the purification level of the sample. In
the course of the fluorescence spectrum which has been excited with 337 nm one can notice the
broad spectrum of yellow substance in a primary clarifier. The expression yellow substance means
all the dissolved degradation products of organic substances. It is noticeable that the derivation of
the linear fit through the top of the plateau of the peak on the left side in Figure 1 changes from
positive to negative values during the purification process.
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Due to the fact that all the results of this system are only simulations of measurements with a possi-
ble error of about 20%, it can be stated that this method and its implementation of the MLP should
be carefully compared with conventional analytical methods. Therefore, further investigations shall
show whether the high output error can be reduced by optimising the MLP and its training algo-
rithm. The algorithms used at present can be regarded as straightforward implementations and the
assumption is justified that a significant improvement of the present performance can be achieved
by optimising the MLP.
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