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ABSTRACT
The paper summarizes results of laboratory and field experiments as well as of computer modelling
obtained by the authors in 1998-2000 within the scope of their joint INTAS project, and of the Rus-
sian federal program 'Integratsiya'. It has been found that at oil pollution (OP) concentrations in
water at concentrations of tens of micrograms per litre the intensity of their fluorescence band is
significantly lower than that of aquatic humic substances (AHS), typical of coastal waters. Gener-
ally, the OP and AHS fluorescence bands overlap (to a greater or lesser degree at different excita-
tion wavelengths). Thus, it is necessary to solve the problem of extracting small contributions of OP
fluorescence. This task is complicated by the effects of a possible interaction between components
and changing OP fluorescence band parameters during its presence in the water ('ageing' effect).

In this paper, a possible solution of the indicated problem is investigated by analysing the seawater
fluorescence band directly with sensitive instruments, and with the method of fluorimetry with vari-
able gating (a variant of the kinetic fluorimetry). Both methods are used in combination with the
application of artificial neural networks (ANN). Spectra obtained for different OP in pure water and
in water containing AHS at different concentrations were used as initial data for ANN training. The
results of such a treatment of fluorescence spectra of real seawater samples from coastal water areas
of the Black Sea, of model samples and computer simulations, have demonstrated the real possibil-
ity of estimating OP concentrations in coastal water down to micrograms per litre. It was shown that
the application of the ANN technique to the analysis of fluorescence kinetic allows to determine
lifetimes of the excited states of fluorophores and their partial contributions, when an information
about their fluorescence band shape (with satisfactory accuracy) is not available.

INTRODUCTION
Express monitoring of oil pollutants (OP) in the seawater remains an actual problem. This problem
is extremely important for coastal waters, where consequences of OP are especially dangerous to
the environment. The possibilities of developing practically applicable in situ methods of oil pollut-
ants fluorescence diagnostics in seawater, i.e. without sampling and preparation, will be discussed
in this paper. Only these methods are adequate to the modern problems of ecological monitoring of
vitally important seawater areas. However, this problem is complicated because of intensive back-
ground signals, which is created by aquatic humic substance (AHS). In coastal waters the concen-
tration of AHS is hundred or thousand times higher than that of oil pollutants.

In this paper two approaches are considered, which are capable of solving this problem separately
or in combination:
1. The analysis of fluorescence spectra of organic compound mixtures in order to distinguish small

contributions of oil pollutants from the generally observed AHS fluorescence band by means of
Artificial Neural Networks (ANN).

2. Fluorimetry with variable gating (kinetic fluorimetry) using ANN.
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METHODS AND RESULTS
Extracting small contributions of oil pollution by analysis of the coastal sea water fluorescence
band shapes  by means of ANN.
Figure 1 displays the typical spectrum of the optical response of water samples from coastal water
areas of the Black Sea in the vicinity of Gelendzhik (black line), and the spectrum of the same sam-
ple after extracting OP by hexane (red line). These spectra were recorded with a laser spectrometer
(on the bases of a N2 laser). The presence of OP with concentrations of up to at least 14 µg/l does
not appear in the fluorescence spectrum. Our task is to learn how to determine small fluorescent
contributions of oil pollutants to the general fluorescence band against the background of aquatic
humic substance typ ical of the coastal marine waters.

Figure 1: Typical fluores-
cence spectra of the sea-
water samples without (red
line) and with (black line)
OP, concentrations 14 µg/l,
λexc = 337 nm.  R – Raman
scattering band from water
molecules.

A transition from λexc = 337 nm to 266 nm leads to the appearance of fluorescence bands of light oil
hydrocarbons in the region of 310…360 nm, i.e. in the “window” between the water Raman scat-
tering band (λRS

max = 291 nm) and the AHS fluorescence band. Simultaneously, however, the fluo-
rescence bands of protein-like compounds show up in the same region (1,2). Their concentrations
are high in coastal water, and their fluorescence contributions exceed the fluorescence contribution
of OP. The fluorescence bands of heavy oil hydrocarbons overlap with the AHS fluorescence bands
as usual. Hence, the problem of extracting the little fluorescence contributions of OP to the back-
ground bands (now AHS and protein–like compounds) is important under excitation λexc = 266 nm,
too.

For solving this problem, we first carried out a computer experiment with the purpose of estimating
the minimal detectable contribution of oil pollutants to the fluorescence band of their mixture with
aquatic humic substance.

As the initial data for computer modelling, we used fluorescence spectra of water solutions of hu-
mic acids (extracted from soil), oil, Diesel fuel, and their mixtures with different partial concentra-
tions of the components, recorded with a Perkin Elmer model LS50 luminescence spectrometer.
Examples of the obtained fluorescence spectra are shown in Figure 2. Values of the fluorescence
parameter Φ0=Nfl

0/NRS (Nfl
0 is a number of fluorescence photons, NRS is a number of Raman scat-

tering photons) of pure substances and their mixtures varied approximately from 0.02 to 20.

In the computer experiment it is assumed that there is no interaction between these components.
Spectra of mixture are simulated as a linear superposition of initial spectra of the components, with
variable weight coefficients. Partial values of the fluorescence parameter Φ0 were used as the
weight coefficients.

Using this linear model, fluorescence spectra of mixtures of fulvic acids and oil pollutants have
been calculated, and neural networks have been trained on these spectra.
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Figure 2: Fluorescence spectra
of German oil in distilled wa-
ter (black line), fulvic acid in
distilled water (red line) and
their mixture in distilled water
(blue line), λexc=337 nm.

The application of neural networks to the model (simulated) spectra shows that by means of this
technique, one can determine the contribution of oil pollutants down to a value of the fluorescence
parameter Φ0

OP = 0.02 against the background of humic acid fluorescence up to values of Φ0
HA =

20.0. In this case, the error in determining the Φ0
OP parameter did not exceed 10%. When the value

of ? 0
OP is increased the error decreases. Thus, the average relative error over the whole range of

? 0
OP and ? 0

HA is about 2% (see Table 1, columns 1 and 2). However, these estimations are derived
for an ideal case, where the fluorescence bands of the components are known. Besides that, the in-
teraction between components, the influence of aquatic humic substance on the water Raman scat-
tering band, and the effects of oil ‘ageing’ are neglected.

It is obvious that these factors hamper the procedure of distinguishing the contribution of oil pollut-
ants to the fluorescence emission of unpolluted seawater. Therefore, an experiment capable of tak-
ing the described effects into account was done. The neural network was trained on real fluores-
cence spectra of mixtures of humic acids with oil pollutants and with Diesel fuel. Therefore, all the
mentioned factors were taken into account automatically. Table 1 compares the results of applying
the two described types of neural networks to simulated and experimental spectra.

Table 1: Average relative errors  (ε FA, εGO) of the definition of the humic acids and German oil
fluorescence parameters (? 0

FA, ? 0
GO) by means of ANN analysis of the fluorescence bands. 

λexc = 337 nm.

ANN trained on a
'linear model', for the

model set spectra

ANN trained on a
'linear model', for the

experimental set

ANN trained on ex-
perimental spectra, for
the experimental set

1 2 3 4 5 6
εFA, % εGO, % εFA, % εGO, % εFA, % εGO, %

2.1 1.6 12.0 27.1 9.6 12.8

Average errors, which are shown in columns 3 and 4, are the errors of the measured fluorescence
parameters of the experimental spectra of the German oil and fulvic acid mixtures by means of
ANN trained on the emulated spectra. A comparison of columns 1 and 2 with columns 3 and 4 re-
veals that the errors rapidly increases when compared with the earlier described ideal cases. This is
apparently due to interaction and aging processes described above, and the high noise of the input
data. To improve this, ANN trained on experimental spectra were used where the interaction and
‘ageing’ are considered automatically (Table 1, columns 5, 6). Indeed, the error decreased in com-
parison with columns 3 and 4, but remained above that of the ideal case (columns 1, 2). The reason
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is the decrease of the number of spectra used for the ANN training, in contrast to the case where the
ANN is trained on simulated spectra (i.e. on a model).

Thus, in the ideal case, processing of spectra by means of neural networks may yield very good re-
sults. However, under natural conditions, one should account for the above-mentioned factors. This
has been shown with two possible approaches for field measurements. In the first approach ANN
training is based on the spectra of natural water samples measured without any sample processing,
for which independent data (for example by means of extraction) of the oil pollution concentration
are available. It is obvious that for monitoring purposes the data base volume should be quite large,
but it is difficult to provide this data base in field experiments. In the second approach (which could
be named ‘model’), the training process is based on simulated spectra, which are combined from
seawater spectra and spectra of the oil pollutants that typically occur in that area. In a first approxi-
mation such spectra could be summed up following a linear model and neglecting the influence
between the components and the ‘ageing’ effect. In a second approximation such influences could
be included as a result of their specific analysis. Choosing the reference spectra for the ANN train-
ing is one of the critical problems of this method.

However, the choice of standard spectra, which are the best fits of a real water pollution, is a com-
mon problem of all known oil pollution analysis methods, including the UNESCO method (3). This
will be the goal of future investigations to solve this problem. In this paper the following approach
was chosen: The spectra (266 nm excitation) of samples taken in the Blue, Gelendzhik, and No-
vorossiisk bays were analysed. The same samples were used to extract oil pollutants with hexane by
the standard UNESCO method (3). A qualitative comparison of fluorescence spectra of such ex-
tracts with those of Diesel fuel and machine oil solutions in hexane revealed that the shapes of the
fluorescence bands of the Diesel fuel and machine oil solutions differ noticeably, and the fluores-
cence bands of the extracts were close by shape to one or the other of these bands (Figure 3).

Figure 3: Fluorescence bands of
hexane extracts (solid line) and
hexane solutions (dashed line),
λexc = 266 nm. Extract of water
samples a) from station 26, No-
vorossiisk bay (depth 0 m) and
solution motor oil in hexane; b)
from station 4, Gelendzhik bay
(depth 0m) and solution of Die-
sel fuel in hexane.

It is therefore assumed that in the sampling area the water was polluted by these oil products. This
result was not evident a priori, since the process of OP formation in the water column is highly
complicated and depends on many factors. In particular, fluorescence properties of OP depend on a
correlation of truly soluble fractions and oil emulsion. The fluorescence band of a soluble fraction
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greatly differs from a fluorescence band of the pure oil and is stable in time. In the beginning a fluo-
rescence band of an emulsion is close to that of the pure oil, but changes noticeably in time (4).

First, seawater samples were presented to the ANN trained on fulvic acids and Diesel fuel mixtures.
In this case the ANN did not identify the spectra of these samples. This is due to the AHS in the in-
vestigated region which differ from the humic acids. It is also possible that the spectra of the real
OP differ from those of the Diesel fuel.

Secondly, the neural networks were trained on the spectra of simulated 'mixtures' of the solution
(emulsion) of Diesel fuel with real seawater samples, free from oil pollution. The seawater samples
were taken in the area of Yuzhnaya Ozereevka, 200 meters off the shore, from a 1 metre depth.

The ANN derived the appropriate oil pollution concentration only for the sample with a measured
concentration of 13 µg/l (this sample was obtained above the sank vessel ‘Admiral Nakhimov’).
This concentration should correspond to an Φ0

DF value of 0.7 in the original sample, but the ANN
gives Φ0 = 0.4. Thus, the sensitivity of these networks reveals Φ0 ≥ 0.4 for real seawater spectra at a
Diesel fuel concentration of 13 µg/l, the error in this case being about 70%. In cases with Φ0 < 0.4
the ANN did not reveal reliable results. As shown above, there are several reasons the sensitivity
limit being ten times higher than in the ideal case: the errors (noise), the neglected interaction, and
mainly the rough approximation of the real spectra of the components (oil pollution and AHS) in
natural water as reference spectra used for ANN training. In future investigations we will pay spe-
cial attention to this problem1.

It is expected that the detection threshold of Φ0
OP can be highly improved using fluorescence satu-

ration. It has been found (5) that the dependence of the saturation factor Γ on F may be approxi-
mated with a linear function Γ≈1+β ⋅F at not too high values of the photon flux F of the pumping
radiation. Estimations showed that the ratio (βAHS/βOP) differs from 1.5 to 3 for different oil pollut-
ants at 337 nm excitation (5). This means that under laser excitation, the fluorescent contribution
Φ0

OP/(Φ0
AHS+Φ0

OP) increases with the intensity of excitation F, improving the possibility of detect-
ing this contribution. A full-scale solution of the inverse problem of fluorescence saturation for a
mixture of organic compounds is complex enough. However, algorithms based on neural networks
developed to solve the saturation fluorimetry problem for single-component solutions (emulsions)
(6,7) provide a basis for solving such a problem for two-component solutions as well.

Fluorimetry with variable gating (kinetic fluorimetry).
A second approach is the method of fluorimetry with variable gating. This is another way to in-
crease the fluorescent contribution Φ0

OP/(Φ0
AHS+Φ0

OP): by optimising the gate duration and the de-
lay time, it is possible to utilise the difference between the fluorescence decay times of the compo-
nents (8). In the general case of fluorimetry with variable gating, the set of fluorescence intensity
values for a mixture of organic compounds is measured at different wavelengths and at different
delay times. It is possible to use three algorithms for processing this data:
• to obtain a dependence of the time constant of the exponent approximating the kinetic curve, on

fluorescence wavelength, and using it to identify the pollutant (9 and bibliography in this book);
• to determine the component concentrations for a mixture of fluorophores on the basis of the al-

gorithm treating the full spectral-temporal matrix and of the calibration procedure (10);
• to identify the dependence of the fluorescence photon number Nfl (over the entire spectrum) in

the receiver gate-on delay time (kinetic curves), and use as a basis for solving the inverse prob-
lem of determination of the fluorescence decay time for all components and of their partial va l-
ues Φ0i.

                                                
1 The realization of this program during an expedition on the Black Sea in September 2000 led to a great improve-

ment of the results:  the error of determination of the parameter ? 0
OP was decreased to 17% in the real samples of

seawater (this footnote was added upon correction of the article in October 2000).
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The last approach has been studied since it does not require a knowledge of the OP fluorescence
band shape, and, therefore, obviates the main difficulty involved in other methods. The preliminary
results show that the precision of the determination of oil pollutant concentrations is lower since the
information about the contour of the fluorescence band and hence an initial information is not used.
Moreover, the precision of determining the fluorescence lifetime τ and of partial contributions is
lowered if the condition of a laser pulse length and detector gate duration smaller than the fluores-
cence lifetime is not met. Therefore, it was estimated, to what extent the neural network is capable
to solve the problem under these cond itions.

In this experiment, solutions (emulsions) of Aldrich humic acid, German oil, Diesel fuel, and tryp-
tophan (trp) in distilled water were used. The 4th harmonic of a YAG:Nd laser (λexc = 266 nm, τlas =
7 ns) was used, and signals were recorded with a UV-enhanced optical multichannel analyser (Del-
taTek, Russia) with τgate = 10 ns and with a delay time between 0 and 50 ns in 2 ns steps. The fluo-
rescence decay curves Nfl(tdelay) of the analysed substances are shown in Figure 4.

The neural network was trained on model kinetic curves. Two fluorescence models were selected:
1) A single-component model, where the solutions of the kinetic equations, calculated for τ in the

range from 1 to 40 ns, were the inputs and the sought lifetime τ was the output.
2) A two-component model for substances containing two types of fluorophores. This corresponds

to a three-parameter inverse problem with the parameters τ1 and τ2 of the fluorophores, and the
ratio of their partial fluorescent contributions. The kinetic curves calculated in the parameter
ranges shown in Figure 4 were the inputs to the neural networks.

Figure 4: Experimental kinetic
curves of dissolved-emulsified
German oil (black line) and a
solution of humic acid (red
line) in distilled water. λexc=266
nm.

Table 2: Parameters τ1, τ2, and Φ01/Φ02 for Aldrich humic acid (AHA), German oil (GO), Diesel
fuel (DF) and tryptophan (trp), determined by means of the artificial neural networks method in
single- and two-component models.

Object One-component model Two-component model
τ ±σ /ns τ1 ±σ /ns τ2 ±σ /ns Φ01/Φ02±σ

trp 4.4 ± 0.1 - - -
AHA 3.3 ± 0.1 3.6 ± 0.8 14.6 ± 1.1 3.6 ± 0.6
GO - 0.7 ± 0.2 20.6 ± 6.2 7.4 ± 1.2
DF - 3.1 ± 0.9 21.8 ± 2.1 7.4 ± 1.2

Since there is no concurrence in the literature regarding the number of fluorophores in the sub-
stances under investigation, it was interesting to present the recorded kinetic curves for them to both
neural networks and to compare the results (Table 2). The obtained lifetimes values are in good
qualitative agreement with known literature data. This holds mainly for trp and humic acid (11).
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CONCLUSIONS
The high diagnostic ability of ANN makes it possible to determine oil pollution in coastal waters,
where the oil fluorescence is less than the fluorescence of humic substances and protein–like com-
pounds which form the background bands. The direct analysis of the fluorescence band shape using
ANN allows to determine values of ? 0

OP = 0.02 of the fluorescence parameter in the presence of a
background of ? 0

AHS = 20 from humic substances in the ideal case. In realistic conditions this still
holds with a value of ? 0

OP = 0.1. A further progress will depend on a successful study of the nature
of humic substance and oil fluorescence bands, and the regularities of their characteristics under
different conditions in seawater.

The ANN technique allows a diagnostic variant of kinetic fluorimetry to be realised with a limited
size of initial information, first of all with an exact knowledge of the fluorescence band shapes. The
fluorescence parameter ? 0

OP and the fluorescence lifetimes determined by this method leads to a
rough identification of oil pollution. It can be carried out more exactly using the method of non-
linear fluorimetry. To develop non-linear fluorimetry for a multi-component mixture of organic
compounds is a subject of future investigations.

The analysis showed that the full-scale development of a strictly scientifically established method
of in situ fluorescence diagnostics of oil pollutants in coastal waters is very complicated. However,
the results obtained in this study show that it is possible to solve this problem on the basis of the
approaches developed here. For this purpose the most interesting task will be to create a complex
method including all approaches described in this paper.
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